Editors: | F. Kongoli, F. Marquis, N. Chikhradze, T. Prikhna, M. De Campos, S. Lewis, S. Miller, S. Thomas. |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2022 |
Pages: | 290 pages |
ISBN: | 978-1-989820-68-1(CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
The rapid emergence of antibiotic resistance has weakened the efficacy of conventional antibiotics where urgent actions are necessary to address this issue [1]. Nanoparticles have been increasingly explored to nullify this antibiotic resistance and eliminate bacterial cell [2]. However, toxicity issue of nanoparticles coupled with its inability to bypass bacterial cell membrane remain an alarming issue. In this regard, bacteria-derived extracellular vesicle (EV) cloaked nanoparticles can resolve all the mentioned issues due to its natural cellular functions and potential for various biomedical applications [3]. Herein, we report a fabrication of a novel biocompatible anti-Stapylococcus nanoplatform MZL, in which MoS2-ZnO (MZ) nanocomposite (core) was camouflaged with Lactobacillus paracasei-derived EVs (shell) (L). A low-temperature solution synthesis method was utilized to prepare ZnO nanoparticles that were immobilized onto PEG functionalized MoS2 nanosheets. The resulting MZ nanocomposite was characterized using X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Moreover, the MZL was characterized with hydrodynamic sizes, surface zeta potentials, SDS-PAGE gel analysis. The MZL nanoplatform showed excellent synergistic antibacterial activity against S. aureus compared to other samples and completely eradicates bacteria even at 6.25 µg mL-1 concentration. Additionally, the MZL also showed good biocompatibility. Overall, the proposed EV-coated nanoplatform showed excellent efficacy for antibacterial activity compared to other conventional antibiotic and has the potential for future in vivo application.