Editors: | F. Kongoli, H. Inufusa, C. Amatore, H. Chen, W. Huang, H. Goor. |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2022 |
Pages: | 152 pages |
ISBN: | 978-1-989820-62-9(CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Our group focuses on developing new devices and analytical methods for tracking of chemical and electrical signals simultaneously in the brain of free-moving animals. Systematic and in-depth research has been carried out on breaking the key bottleneck of real-time monitoring and quantification of from reactive oxygen species and oxidative stress related species in physiological and pathological processes with high selectivity, high accuracy, long-term stability, and designing new devices for brain imaging with high temporal resolution.[1-2] Firstly, the synergy strategy of molecular recognition and electrochemical recognition was proposed for achieving highly selective determination, and new approaches based on rational design of specific molecules with built-in calibration were established for accurate quantification in living brains.[3] Secondly, to challenge the real-time determination in the complicated brain, Au-S, Au-Se and Au-C≡C bonds were systematically investigated. The Au-C≡C bond showed the highest stability under thiol-rich biological conditions and the best electrochemical performance compared to the others. Furthermore, a more reliable sensing platform with long-term stability and anti-biofouling was constructed through rational integrating highly stable graphene-layered molecular interface, remarkably elongating the time dimension for real-time tracking of the dynamic changes in free-moving animals up from several hours to a record-long 60 days.[4] Thirdly, a SERS optophysiological probe was created for real-time mapping and recording of chemical and electrical signals without cross-talk in the live brain. Using this powerful tool, three new routes that causes Cu+ and Cu2+ change were discovered during ischemia: export from neurons; release from digested copper-containing proteins; conversion from Cu+ to Cu2+. Moreover, it was the first time that a Raman fibre photometry was built up for real-time tracking and simultaneous quantitation of multiple molecules in mitochondrial across the brain of free-moving animals. Meanwhile, a highly selective non-metallic Raman probe was created through triple-recognition strategies of chemical reaction, charge transfer, and characteristic fingerprint peaks, for monitoring and quantifying of local mitochondrial O2•-, Ca2+ and pH in six brain regions upon hypoxia. It was discovered that hypoxia-induced mitochondrial O2•- burst was regulated by ASIC1a, leading to mitochondrial Ca2+ overload and acidification.[5-7]