Editors: | F. Kongoli, H. Inufusa, C. Amatore, H. Chen, W. Huang, H. Goor. |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2022 |
Pages: | 152 pages |
ISBN: | 978-1-989820-62-9(CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Dysphagia is one of the significant concerns in the aging society. In particular, the elderly with swallowing impairment caused by either central or peripheral nervous systems has difficulty in oral intake, possibly resulting in fatal pneumonia. As such, the development of a therapeutic approach that decreases in the risk of aspiration in dysphagic patients remains a pressing issue for medical doctors. The purpose of our study was to establish the animal model of dysphagia and test the hypothesis that decreased pharyngeal constriction caused by the denervation of the vagal efferent nerves can be improved by the application of the anti-oxidant agent. Thus, we developed the animal model in guinea pigs in which the pharyngeal branch of the vagus nerve was cut and initially evaluated swallowing function using videofluoroscopy. We then tested the effect of oral application of the anti-oxidant agent Twendee X on swallowing function in the dysphagia model animals. Insufficient pharyngeal constriction and pharyngeal residue were found in the denervated animals. The swallowing dysfunction was less pronounced in dysphagic animals with the administration of Twendee X. In conclusion, Twendee X could have a possible role in the improvement of swallowing function in dysphagic patients with decreased swallowing muscle strength caused by neuromuscular atrophy.