Editors: | F. Kongoli, G.Brooks, P. Butterworth, M. Geerdes, Y. Gordon, M. Grant, L. Lu, D. Lu, K. Saito, H. Sohn, T. Usui. |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2022 |
Pages: | 276 pages |
ISBN: | 978-1-989820-54-4(CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
As has shown long-term experiment of Institute of metallurgy of the Ural Branch of the Russian Academy of Sciences, at the solution of practical problems of ferrous metallurgy the increasing role is played by the information systems which basis are mathematical models of the physical, chemical and thermal processes proceeding in metallurgical units [1]. It is known that the cohezive zone in the blast furnace will be formed as a result of a softening of an iron ore component of burden, coke is in solid state. This zone makes limiting impact on productivity of the blast furnace [2]. Location and a form of a cohezive zone substantially is determined by character of unevenness of the temperature field depending on system of loading, the location of the tuyere center, a profile of shaft and change of gas dynamic resistance by height of the blast furnace; in temperatures of a softening and melting of the iron ore material, depending on extent of reduction [3]. Results of calculations of location and form of a zone of a cohezive in the blast furnace for iron ore materials with different metallurgical characteristics are given.