Editors: | F. Kongoli, F. Marquis, S. Kalogirou, B. Raveau, A. Tressaud, H. Kageyama, A. Varez, R. Martins. |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2022 |
Pages: | 154 pages |
ISBN: | 978-1-989820-34-6 (CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
In this work we utilise luminescent properties of Mn4+ doped Li4Ti5O12 - a very promising material for ultrafast-charge-discharge and long-cycle-life batteries [1]. Applying lifetime-based luminescence thermometry on Mn4+ doped materials the remote and non-contact temperature readings are possible with great relative sensitivity [2-4].
The Mn4+ doped Li4Ti5O12 samples were prepared by the one step solid-state method using stoichiometric amounts of Li2CO3, TiO2 and MnO2 at 850 oC to obtain cubic spinel structure with space group Fd-3m as confirmed by X-ray diffraction analysis. In this host, Mn4+ is in a strong crystal field providing the strong absorption around 500 nm due to 4A2g →4T2g electric spin-allowed electron transition and with emission around 679 nm on account of 2Eg →4A2g spin forbidden electron transition. Due to the coupling to phonon modes of the host material [5] the change of radiative decay rate (radiative lifetime) starts at very low temperatures (»75 K). In addition, the low value of energy of 4T2g level (20000 cm−1) leads to the strong emission and radiative lifetime quenching starting at low temperatures (»250 K) which favours the use of this material for the luminescence thermometry in a broad temperature range.
Temperature dependences of photo-luminescent emission spectra and emission decay are measured over the 10–350 K range exhibiting quite large value of relative sensitivity (2.6% K−1@330 K) that facilitates temperature measurements with temperature resolution better than 0.15 K around room temperature.
[1] Bote Zhao, Ran Ran, Meilin Liu, Zongping Shao ; A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives ; Materials Science and Engineering: R: Reports,Volume 98,Pages 1-71, 2015
[2] Sekulić, M., Ristic, Z., Milićević, B., Antić, Ž., Đorđević, V., & Dramićanin, M. D. (2019). Li1.8Na0.2TiO3:Mn4+: The highly sensitive probe for the low-temperature lifetime-based luminescence thermometry. Optics Communications, 452, 342–346.
[3] Li F., Cai J., Chi F.F., Chen Y., Duan C., Yin M.Investigation of luminescence from luag: Mn4+ for physiological temperature sensing, Opt. Mater., 66 (2017), pp. 447-452,
[4]Glais E., Đorđević V., Papan J., Viana B., Dramićanin M.D.MgTiO3:Mn4+ a multi-reading temperature nanoprobe, RSC Adv., 8 (2018), pp. 18341-18346,
[5] Senden T., van Dijk-Moes R.J.A., Meijerink A. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors, Light Sci. Appl., 7 (2018), p. 8