2022-Sustainable Industrial Processing Summit
SIPS2022 Volume 1 Alario-Franco Intl. Symp Solid State Chemistry

Editors:F. Kongoli, F. Marquis, S. Kalogirou, B. Raveau, A. Tressaud, H. Kageyama, A. Varez, R. Martins.
Publisher:Flogen Star OUTREACH
Publication Year:2022
Pages:154 pages
ISBN:978-1-989820-34-6 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2022_Volume1
CD shopping page

    High sensitivity temperature probing of Mn4+ doped Li4Ti5O12 by lifetime-based luminescence thermometry

    Zoran Ristic1; Mina Medic1; Vesna Djordjevic1; Sanja Kuzman1; Mikhail G. Brik2; Miroslav Dramicanin1;
    1UNIVERSITY OF BELGRADE, VINCA INSTITUTE OF NUCLEAR SCIENCES, Belgrade, Serbia and Montenegro; 2INSTITUTE OF PHYSICS, UNIVERSITY OF TARTU,, Tartu 50411, Estonia;
    Type of Paper: Regular
    Id Paper: 63
    Topic: 52

    Abstract:

    In this work we utilise luminescent properties of Mn4+ doped Li4Ti5O12 - a very promising material for ultrafast-charge-discharge and long-cycle-life batteries [1]. Applying lifetime-based luminescence thermometry on Mn4+ doped materials the remote and non-contact temperature readings are possible with great relative sensitivity [2-4].
    The Mn4+ doped Li4Ti5O12 samples were prepared by the one step solid-state method using stoichiometric amounts of Li2CO3, TiO2 and MnO2 at 850 oC to obtain cubic spinel structure with space group Fd-3m as confirmed by X-ray diffraction analysis. In this host, Mn4+ is in a strong crystal field providing the strong absorption around 500 nm due to 4A2g4T2g electric spin-allowed electron transition and with emission around 679 nm on account of 2Eg4A2g spin forbidden electron transition. Due to the coupling to phonon modes of the host material [5] the change of radiative decay rate (radiative lifetime) starts at very low temperatures (»75 K). In addition, the low value of energy of 4T2g level (20000 cm−1) leads to the strong emission and radiative lifetime quenching starting at low temperatures (»250 K) which favours the use of this material for the luminescence thermometry in a broad temperature range.
    Temperature dependences of photo-luminescent emission spectra and emission decay are measured over the 10–350 K range exhibiting quite large value of relative sensitivity (2.6% K−1@330 K) that facilitates temperature measurements with temperature resolution better than 0.15 K around room temperature.

    Keywords:

    Advanced Characterization Techniques and Applications; Important classes of materials;

    References:

    [1] Bote Zhao, Ran Ran, Meilin Liu, Zongping Shao ; A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives ; Materials Science and Engineering: R: Reports,Volume 98,Pages 1-71, 2015
    [2] Sekulić, M., Ristic, Z., Milićević, B., Antić, Ž., Đorđević, V., & Dramićanin, M. D. (2019). Li1.8Na0.2TiO3:Mn4+: The highly sensitive probe for the low-temperature lifetime-based luminescence thermometry. Optics Communications, 452, 342–346.
    [3] Li F., Cai J., Chi F.F., Chen Y., Duan C., Yin M.Investigation of luminescence from luag: Mn4+ for physiological temperature sensing, Opt. Mater., 66 (2017), pp. 447-452,
    [4]Glais E., Đorđević V., Papan J., Viana B., Dramićanin M.D.MgTiO3:Mn4+ a multi-reading temperature nanoprobe, RSC Adv., 8 (2018), pp. 18341-18346,
    [5] Senden T., van Dijk-Moes R.J.A., Meijerink A. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors, Light Sci. Appl., 7 (2018), p. 8

    Cite this article as:

    Ristic Z, Medic M, Djordjevic V, Kuzman S, Brik M, Dramicanin M. (2022). High sensitivity temperature probing of Mn4+ doped Li4Ti5O12 by lifetime-based luminescence thermometry. In F. Kongoli, F. Marquis, S. Kalogirou, B. Raveau, A. Tressaud, H. Kageyama, A. Varez, R. Martins. (Eds.), Sustainable Industrial Processing Summit SIPS2022 Volume 1 Alario-Franco Intl. Symp Solid State Chemistry (pp. 129-130). Montreal, Canada: FLOGEN Star Outreach