Editors: | F. Kongoli, F. Marquis, S. Kalogirou, B. Raveau, A. Tressaud, H. Kageyama, A. Varez, R. Martins. |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2022 |
Pages: | 154 pages |
ISBN: | 978-1-989820-34-6 (CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Materials under ultrahigh pressure (HP) exhibit a variety of interesting properties.[1] However, some of the HP-phase materials that are thermodynamically stable under HP (> 10 GPa) transforms into amorphous or different crystalline phase during decompression. If this back-transformation can be suppressed, we can obtain some functional HP-phase materials to be utilized in the future. To obtain such HP-phase materials under ambient pressure, we focused on the epitaxial stabilization of metastable-phase materials and came up with the idea of applying HP to thin-film samples.[2]
We first investigated an HP-phase, α-PbO2-type TiO2 (orthorhombic, a = 0.454 nm, b = 0.549 nm, c = 0.491 nm). This phase is obtainable under ambient pressure. Unfortunately, most of the reported data was about the product in the form of powder, and only a few reports about the fabrication of single crystals are currently available. In particular, single-phase epitaxial thin films have not been reported. In this study, we developed a technique for applying HP (8 GPa) to thin-film samples. Using a rutile TiO2(100) epitaxial thin film as a precursor, we fabricated epitaxial thin films of single-phase α-PbO2-type TiO2(100) by inducing a structural phase transition at ultrahigh pressure.
Thin films of epitaxial rutile TiO2(100) (thickness: ~100 nm) were deposited as precursors on Al2O3(001) (5 mm in diameter and 0.5 mm in height) using pulsed laser deposition. HP treatment for thin films was performed using a Kawai-type multi-anvil HP apparatus. The precursor thin film was heated up to 1000 °C under HP of 8 GPa, and then kept for 0.5 h. After the heating step, the film was quenched to room temperature (RT), followed by decompression.
The results of X-ray diffraction and Raman spectroscopy indicate that a single-phase α-PbO2-type TiO2(100) epitaxial thin film has been obtained. It should be stressed here that rocking-curve full width at half maximum of the 200 peak showed a quite small value of 0.11°, indicating very high crystallinity. Our present study indicates that HP treatment to thin-film samples allows us to fabricate high-quality HP-phase epitaxial thin films.