Editors: | F. Kongoli, F. Marquis, S. Kalogirou, B. Raveau, A. Tressaud, H. Kageyama, A. Varez, R. Martins. |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2022 |
Pages: | 154 pages |
ISBN: | 978-1-989820-34-6 (CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
In spite of free-atom electronic-relaxation contributions to transition-metal cohesive-energies (Ecoh), numerous studies have misused the latter instead of using genuine interatomic bond-energies (Eb) in modeling bulk and surface properties [1-2], including atomistic-potential parametrization for nanoalloys. The required Ecoh modification consists of s to d electronic promotion energy plus the magnetic spin-polarization energy (in accordance with Hund’s first rule). The latter was computed [3] for the 3d, 4d and 5d series using the local spin-density approximation (LSDA), whereas the former was obtained from spectroscopic data.
This work first reveals that eliminating these free-atom contributions from experimental cohesive-energies leads to highly accurate linear correlations of the resultant bond-energies with melting temperatures and enthalpies, as well as with inverse thermal-expansion coefficients, specifically for the fcc transition-metals. In addition, predictions of surface segregation phenomena in Cu-Pd and Au-Pd bulk alloys on the basis of the correct energetics are in much better agreement with reported LEISS experimental results. A distinctive demonstration of the problem and its solution involves the significant impact of the cohesive-energy modification on segregation (separation) phase transitions in Cu-Ni truncated-octahedron nanoalloys. In particular, without the correction destabilization of Janus configuration in favor of core-shell is erroneously obtained. Preliminary computations for Cu-Ni-Pd ternary nanoalloys reveal significant effects of Pd and of the fixed energetics on chemical-order and transition temperatures.
Generally, the introduced correction procedure should be applicable also to other bond-energy related properties of any transition metals, alloys as well as nanoalloys.