Flogen
In Honor of Nobel Laureate Prof. Ferid Murad
Logo
Banner

Abstract Submission Open! About 500 abstracts submitted from about 60 countries


Featuring 9 Nobel Laureates and other Distinguished Guests

Abstract Submission

DETAILLED PROGRAM OVERVIEW

(Provisional)

Back
    Nanopore Electrochemistry for Single-Molecule Analysis
    Yi-tao Long1; Yi-lun Ying1; Ru-jia Yu1; Zheng-li Hu1; Si-min Lu1; Hong-yuan Chen1;
    1NANJING UNIVERSITY, Nanjing, China;
    PAPER: 538/Oxidative/Regular (Oral)
    SCHEDULED: 17:10/Wed. 30 Nov. 2022/Ballroom B



    ABSTRACT:
    Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize single entities including single cells, single particles, and even single molecules by electrochemical technology.1-3 The electrochemical confined effect within the nanopore displays the incredible ability to achieve single entity discrimination by focusing energy (e.g. electrochemical, light energies and et al.) into small areas, converting the intrinsic properties of single entities into visible electrochemical read-outs with ultra-high temporal-spatial resolution. Furthermore, the excellent resolution of confined nanopore technology also permits the possibility to resolve the transient signals for further revealing the information of single biomolecules dynamics. The chemical controlled confinement inside nanopore provides the advanced electrochemically confined effects to convert the transient single molecule difference into the enhancing signal with high temporal-spatial resolution. In our group, the nanopore electrochemistry has been further applied into disease diagnostics by identifying rare sub-populations, DNA/protein sensing by reading the sequential differences and uncovering the fundamental chemical reactions pathways by revealing the hidden intermediates. With the advents of advanced measurement mechanism, instrumentation and data algorithm, electrochemically confined nanopore is certainly an exciting and promising field. We expect the next avenue for the wide applications of nanopore electrochemistry in a variety of disciplines, leading us explore the new chemistry at a much smaller scale.

    References:
    1. Ying, Y. L.; Long, Y. T., Nanopore-Based Single-Biomolecule Interfaces: From Information to Knowledge. J. Am. Chem. Soc. 2019, 141 (40), 15720-15729.
    2. Li, X.-Y.; Ying, Y.-L.; Fu, X.-X.; Wan, Y.-J.; Long, Y.-T., Singleā€Molecule Frequency Fingerprint for Ion Interaction Networks in a Confined Nanopore. Angew. Chem. Int. Ed., 2021, 133 (46), 24787-24792.
    3. Hu, Z.-L.; Huo, M.-Z.; Ying, Y.-L.; Long, Y.-T., Biological nanopore approach for singleā€molecule protein sequencing. Angew. Chem. Int. Ed., 2021, 133 (27), 14862-14873.
    4. Lu, S.-M.; Peng, Y.-Y.; Ying, Y.-L.; Long, Y.-T., Electrochemical Sensing at a Confined Space. Anal. Chem. 2020, 92 (8), 5621-5644.