Flogen
2019 - Sustainable Industrial Processing Summit & Exhibition
23-27 October 2019, Coral Beach Resort, Paphos, Cyprus
Abstract still accepted for a limited time
Almost 500 Abstracts Submitted from 60 Countries
Six Nobel Laureates have already confirmed their attendance: Profs. Dan Shechtman, Kurt Wüthrich, Ferid Murad, Rudy Marcus, Yuan Lee and Klaus Klitzing.
NEWS
Abstract Submission

DETAILLED PROGRAM OVERVIEW

Back
    A Convenient Way to Synthesize of Nanosized Catalysts in Quasi-intramolecular Solid Phase Redox Reactions
    Laszlo Kotai1; Fernanda Paiva Franguelli2; Kende Beres3; Hanna Solt1; Peter Nemeth1; Zoltan Homonnay4; Istvan E. Sajo5;
    1RESEARCH CENTRE FOR NATURAL SCIENCES, HUNGARIAN ACADEMY OF SCIENCES, Budapest, Hungary; 2HUNGARY AND BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS, Budapest, Hungary; 3HUNGARY AND INSTITUTE OF CHEMISTRY, ELTE EOTVOS LORAND UNIVERSITY, Budapest, Hungary; 4INSTITUTE OF CHEMISTRY, ELTE EOTVOS LORAND UNIVERSITY, Budapest, Hungary; 5JANOS SZENTAGOTHAI RESEARCH CENTRE, UNIVERSITY OF PECS, Budapest, Hungary;
    PAPER: 289/AdvancedMaterials/Keynote (Oral)
    SCHEDULED: 16:20/Fri. 25 Oct. 2019/Leda (99/Mezz. F)



    ABSTRACT:
    Nanosized mixed-metal-oxide catalysts are used in various industrially relevant processes like Fischer-Tropsch synthesis or NOx removal from gases. Transition metal ions, coordinated by reducible ligands (NH<sub>3</sub>, pyridine or urea) that make salts with oxometalate anions (MnO<sub>4</sub><sup>-</sup>, CrO<sub>4</sub><sup>2-</sup>, Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup>), are used to prepare nano-sized mixed spinel-type metal-oxides with pre-selected composition, properties, and structure. The applicability of a mixed oxide catalyst is determined by the distribution of the two metals among valence states, and crystallographic positions (in spinels T-4 and OC-6). The methods currently used for the synthesis of mixed metal-oxides do not allow the control of these properties. This is because the methods used for synthesis of mixed metal-oxides include processes that take place at high temperatures, where the mobility of atoms leads to the formation of a thermodynamically stable structure. This stable structure is characterized by its unique distribution of metal atoms among positions and valence states. The unique feature of the catalyst synthesis method developed by us [1-4] is based on the thermal decomposition of tetraoxometalates of transition metal ions, coordinated by reducible ligands at relatively low temperatures (100-200 <sup>o</sup>C). The thermal decomposition of tetraoxometalates then releases gas-phase products formed from the ligands. This is a solid-phase reaction which forms mixed oxides with metastable structures because at low temperatures, the metal ions remain in the crystallographic positions of the precursor salt. For example, hexaaquairon(III) permanganate results in (Fe,Mn)O type and (Fe,Mn)<sub>3</sub>O<sub>4</sub> type mixed oxides, depending on the atmosphere and temperature of decomposition. Furthermore, the original spinel structure can be oxidized into defect-spinel structures and finally to (Fe,Mn)<sub>2</sub>O<sub>3</sub> type oxides.<br /> <br />[Fe(urea)<sub>6</sub>(MnO<sub>4</sub>)<sub>3</sub>] --> (Fe,Mn)<sub>3</sub>O<sub>4</sub> --> (Fe,Mn)<sub>3</sub>O<sub>4.5</sub> --> (Fe,Mn)<sub>2</sub>O<sub>3</sub><br /> --> (Fe,Mn)O<br /> Due to a large number of crystal defects, nanocrystallites are formed which is favorable for catalysis. Our method enables one to set the ratio of the metal ions arbitrarily by starting from an isomorphous solid solution in which we partially replaced the metal ion by another one, and/or the anion by another tetraoxometalate or by an "innocent" anion (which forms gaseous products due to the lack of metal atoms, e.g., MnO<sub>4</sub><sup>-</sup> by ClO<sub>4</sub><sup>-</sup>).<br />[Fe(urea)<sub>6</sub>](MnO<sub>4</sub>)<sub>3</sub> -- (Fe,Mn)-oxides with Fe:Mn=1:3 overall ratio<br />[Fe(urea)<sub>6</sub>(MnO<sub>4</sub>)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub> -- (Fe,Mn)-oxides with Fe:Mn=1:2 overall ratio<br />[Fe(Urea)<sub>6</sub>](MnO<sub>4</sub>)(ClO<sub>4</sub>)<sub>2</sub> -- (Fe,Mn)-oxides with Fe:Mn=1:1 overall ratio<br />[(Fe<sub>0.5</sub>Cr<sub>0.5</sub>)(urea)<sub>6</sub>](MnO<sub>4</sub>)<sub>0.5</sub>(ClO<sub>4</sub>)<sub>2.5 </sub>-- (Fe,Cr,Mn) oxides with Fe:Cr:Mn=1:1:1 overall ratio

    References:
    [1] Sajó I.E., Bakos P. Szilágyi I.M., Lendvay Gy., Magyari J., Mohai M., Szegedi A., Farkas A., Jánosity A., Klébert Sz., Kótai L., Inorg. Chem., 2018, 57(21), 13679-13692.<br />[2] Kotai, L., Banerji, K. K., Sajo, I., Kristof, J., Sreedhar, B., Holly, S., Keresztury, G., Rockenbauer, A.<br />Helv. Chim. Acta, 2002, 85<span class="fon_main_wrapper"><span phone-source="(8) 2316-2327" class="fon-phone-wrap fon-hightlighted active-call" id="fon-phone-te9Y5gzl8q">(8) 2316-2327</span><a phone-source="(8) 2316-2327" href="#" class="fonCallLinkButton active-call"><img src="" alt="F"/></a></span><br />[3] Kotai L., Fodor J., Jakab E., Sajo I., Szabo P., Lonyi F., Valyon J., Gacs, I., Argay G., Banerji K., Trans. Metal Chem., 2006, 31(1) 30-34<br />[4] Sajó I. E., Kotai L., Keresztury G., Gacs I., Pokol Gy., Kristóf J., Soptrayanov B., Petrusevski V. M., Timpu D., Sharma P. K., Helv. Chim. Acta 2008, 91, 1646