Capture and Transformation of Carbon Dioxide Confined in Ionic Liquids Jairton Dupont1; 1UFRGS, Porto Alegre, Brazil; PAPER: 13/Molten/Keynote (Oral) SCHEDULED: 11:20/Sat. 26 Oct. 2019/Ambrosia A (77/RF) ABSTRACT: Despite a growing number of climate change mitigation policies and increasing investments associated with the capture and storage technologies for CO<sub>2</sub>, the anthropogenic emissions of this gas are inexorably growing. [1] Hence, there is a growing interest in finding large-scale commercially viable end-use opportunities for CO<sub>2</sub> utilization. In the last decade, thermal, electrochemical, and photo-reduction of carbon dioxide to CO and/or hydrocarbon derivatives has grown into a blooming field of research. [2, 3] A simple combination of sunlight, aqueous solutions saturated with carbon dioxide, and appropriate photocatalysts may yield CO (reverse semi-combustion) and/or hydrocarbon derivatives (reverse combustion). [4, 5] Ionic liquids (ILs) are known to solubilize and, in some cases, to activate carbon dioxide by stabilizing radical/anionic species [6, 7] and hence, constitute an attractive material for CO<sub>2</sub> capture/reduction.[8] We will present the most recent aspects on CO<sub>2</sub> capture by ILs. This involves the formation of bicarbonate, and its hydrogenation promoted metal nanoparticles to hydrocarbons and formic acid, as well as orgono-photocatalytic and electrocatalytic reduction to carbon monoxide. The basic aspects of the multi-roles of ionic liquids in these transformations will be detailed based on experimental and theoretical evidence, particularly in IL aqueous solutions. References: [1] N. Mac Dowell, P.S. Fennell, N. Shah, G.C. Maitland, The role of CO2 capture and utilization in mitigating climate change, Nature Clim. Change, 7 (2017) 243-249. [2] T.A. Faunce, W. Lubitz, A.W. Rutherford, D. MacFarlane, G.F. Moore, P. Yang, D.G. Nocera, T.A. Moore, D.H. Gregory, S. Fukuzumi, K.B. Yoon, F.A. Armstrong, M.R. Wasielewski, S. Styring, Energy and environment policy case for a global project on artificial photosynthesis, Energ. Environ. Sci., 6 (2013) 695-698. [3] K. Li, B. Peng, T. Peng, Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels, ACS Catal., 6 (2016) 7485-7527. [4] J.L. White, M.F. Baruch, J.E. Pander Iii, Y. Hu, I.C. Fortmeyer, J.E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T.W. Shaw, E. Abelev, A.B. Bocarsly, Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes, Chem. Rev., 115 (2015) 12888-12935. [5] S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angew. Chem. Int. Ed., 52 (2013) 7372-7408. [6] B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J. Kenis, R.I. Masel, Ionic liquid-mediated selective conversion of CO(2) to CO at low overpotentials, Science, 334 (2011) 643-644. [7] V. Strehmel, Radicals in Ionic Liquids, ChemPhysChem, 13 (2012) 1649-1663. [8] S. Wang, X. Wang, Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO2 Capture and Photochemical Reduction, Angew. Chem. Int. Ed., 55 (2016) 2308-2320. |