Aleksandr NemovPeter the Great St. Petersburg Polytechnic UniversityMultiscale Simulations For The Development Of Advanced Composite Structures Schrefler International Symposium on Geomechanics and Applications for Sustainable Development Back to Plenary Lectures » | |
Abstract:The introduction of composite materials in industry forced the development of a specific branch of computational science known as mechanics of composite materials. Homogenization, a basic technique of this theory, has been known for about a hundred years, counting from the pioneering work of Voigt [1] and Reuss [2]. The development of advanced composite structures, however, is still pushing the analysis tools and techniques for multiscale simulations, e.g. [3-6] forward. The paper is aimed to review challenges in the design of complex composite structures and ways to overcome them. The following problems are considered as examples for application of the multiscale simulations: prediction of micro-strains in ITER superconducting cables, design of novel composite materials for 3D printing, and design of a new carbon fiber high-speed catamaran. Application of both conventional and novel techniques for homogenization and heterogenization (unsmearing) in multiscale analysis is discussed and pros and cons of various approaches are highlighted. References:[1] Voigt, W. Theoretische Studien Uber die Elasticitatsverhaltnisse der Krystalle // Abh.Kgl.Ges.Wiss.Gottingen, Math.Kl. 1887; 34. pp. 3-51. |