Editors: | F. Kongoli, M.A. Alario Franco, J. Etourneau, S. Kalogirou, F.D.S. Marquis, R. Martins, K. Poeppelmeier, B. Raveau, Y. Shimakawa, M. Takano |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2019 |
Pages: | 130 pages |
ISBN: | 978-1-989820-08-7 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Based on a combination of various first-principles methods, we propose various kinds of layered materials. One is tetragonal GeP2, which has optimal band offset for photocatalyzed CO2 decomposition in wide pH range.[1] The second one TeSe2, which exhibits phase polymorphism, phase transition on charge doping, ferroelectricity, and interesting spin texture.[2,3] I also describe a series of my recent collaborations with an experimental group. First, combined experimental and theoretical effort is described for an efficient photoelectrochemical (PEC) water splitting of p-GeAs/n-Si heterojunction based on the band alignment, buildup of space charge in the junction, and the band bending of the n-Si at the electrolyte interface.[4] Second, our extensive DFT calculation complemented by analysis of charge transfer, band structure analysis, and reaction path for Volmer-Heyrovsky reactions give a deep insight into our experimental results, which has shown that the 1T'-phase guest-intercalated MoS2/WS2 nanosheets synthesized by one-step hydrothermal reaction exhibit excellent stability as well as higher catalytic activity toward the hydrogen evolution reaction at specific guest concentrations.[5-7] Finally, our extensive ab initio molecular dynamics simulations not only reproduce collaborative experimental voltage-charge capacity curves for WS2@graphite and WS2@nitrogen-doped graphite composites in lithium ion battery but also gives us a detailed picture on the structural evolution in the charge-discharge process.[8]