2019-Sustainable Industrial Processing Summit
SIPS2019 Volume 9: Tressaud Intl. Symp. / Solid State Chemistry for Applications and Sustainable Development

Editors:F. Kongoli, M.A. Alario Franco, J. Etourneau, S. Kalogirou, F.D.S. Marquis, R. Martins, K. Poeppelmeier, B. Raveau, Y. Shimakawa, M. Takano
Publisher:Flogen Star OUTREACH
Publication Year:2019
Pages:130 pages
ISBN:978-1-989820-08-7
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2019_Volume1
CD shopping page

    Electronic structure engineering as a new tool in development of Li-ion and Na-ion batteries

    Janina Molenda1;
    1AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KRAKóW, Kraków, Poland;
    Type of Paper: Invited
    Id Paper: 379
    Topic: 52

    Abstract:

    The author of this work basing on her own investigations of LixMO2 cathode materials ( M=Ni, Co, Mn, Cu) has demonstrated that the chemical disorder influenced on electronic structure of these materials plays an important role in the electrochemical intercalation process [1].
    The paper reveals correlation between chemical disorder, crystal and electronic structure, transport and electrochemical properties of layered LixCoO2, LixNi1-y-zCoyCuzMn0.1O2 and NaxCoO2-y [2] cathode materials and explains of apparently different character of the discharge/charge curve in those systems. Comprehensive experimental studies of physicochemical properties of LixNi1-y-zCoyCuzMn0.1O2 and NaxCoO2-y cathode materials (XRD, electrical conductivity, thermoelectric power) are supported by electronic structure calculations performed using the Korringa-Kohn-Rostoker method [3] with the coherent potential approximation (KKR-CPA) to account for chemical disorder. It is found that even small O defects (~1%) may significantly modify DOS characteristics via formation of extra broad peaks inside the former gap leading to its substantial reduction. Moreover, these DOS peaks of “defects” strongly evolve with Li and Na contents, actually leading to the overall reducing of the gap and to even the pseudogap.
    The battery on the base on the developed LiNi0.9-y-zCoyMn0.1CuzO2 cathode materials are characterized by high potential, high capacity and high rate capability guaranteeing high energy and power densities.
    This work was funded by the National Science Centre Poland (NCN) under the “OPUS 12 programme on the basis of the decision number UMO- 2016/23/B/ST8/00199.

    Keywords:

    Design of materials for sustainable energy production;

    References:

    REFERENCES:
    [1] J.Molenda, A.Milewska, W. Zajac, M.Rybski, J. Tobola, Phys. Chem. Phys. Chem. 19, (2017)25697.
    [2] J. Molenda, D. Baster,M. Molenda, K.Świerczek, J. Tobola, Anomaly in the electronic structure of the NaxCoO2-y cathode as a source of its steplike discharge curve, Physical Chemistry Chemical Physics,16 (2014)14845-14857.
    [3] A. Bansil, S. Kaprzyk, P. E. Mijnarends and J. Tobola, Phys., Rev. B: Condens. Matter Mater. Phys., 60 (1999) 13396.

    Cite this article as:

    Molenda J. (2019). Electronic structure engineering as a new tool in development of Li-ion and Na-ion batteries. In F. Kongoli, M.A. Alario Franco, J. Etourneau, S. Kalogirou, F.D.S. Marquis, R. Martins, K. Poeppelmeier, B. Raveau, Y. Shimakawa, M. Takano (Eds.), Sustainable Industrial Processing Summit SIPS2019 Volume 9: Tressaud Intl. Symp. / Solid State Chemistry for Applications and Sustainable Development (pp. 90-91). Montreal, Canada: FLOGEN Star Outreach