2019-Sustainable Industrial Processing Summit
SIPS2019 Volume 9: Tressaud Intl. Symp. / Solid State Chemistry for Applications and Sustainable Development

Editors:F. Kongoli, M.A. Alario Franco, J. Etourneau, S. Kalogirou, F.D.S. Marquis, R. Martins, K. Poeppelmeier, B. Raveau, Y. Shimakawa, M. Takano
Publisher:Flogen Star OUTREACH
Publication Year:2019
Pages:130 pages
ISBN:978-1-989820-08-7
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2019_Volume1
CD shopping page

    Oxygen Incorporation and Release Behaviors in Perovskite-Structure Oxides

    Yuichi Shimakawa1;
    1KYOTO UNIVERSITY, Uji, Japan;
    Type of Paper: Plenary
    Id Paper: 157
    Topic: 52

    Abstract:

    Oxygen ions are incorporated in and released from transition-metal oxides when the valence states of the transition-metal ions change [1]. In topotactic changes of perovskite-structure oxides like SrFe2+O2 - SrFe3+O2.5 - SrFe4+O3, we found that the oxygen incorporation and release behaviors are strongly influenced by the structural factors. The A-site disordered perovskite (La1/3Ca2/3)FeO3 with unusually high valance Fe3.67+ releases oxygen gradually above 500°C, whereas the A-site-layer-ordered perovskite LaCa2Fe3O9 with the identical chemical composition of (La1/3Ca2/3)FeO3 readily releases oxygen around 400°C [2,3]. From the B-site-layer-ordered double perovskite Ca2FeMnO6 with Mn4+ and unusual high valence Fe4+, oxygen is released only form the two-dimensional Fe-O layers according to the successive changes of Ca2Fe4+Mn4+O6 - Ca2Fe3.5+Mn4+O5.75 - Ca2Fe3+Mn4+O5.5. The B-site-disordered Ca2(FeMn)O6, on the other hand, oxygen appears to be released at about 390°C by a single change of Ca2(Fe4+Mn4+)O6 - Ca2(Fe3+Mn4+)O5.5 [4,5]. Thus, the oxygen release behaviors differ depending on both A-site and B-site cation order. An important point for the behaviors of oxides with unusually high valence cations like Fe4+ is that the incorporation and the release of oxygen can occur at much lower temperatures than those with typical valence transition-metal ions. We will discuss the details of such behaviors from temperature-dependent structure analysis.

    Keywords:

    Advances in the synthesis routes; Important classes of materials;

    References:

    [1] Y. Shimakawa, Bull. Chem. Soc. Jpn. 86, 299-311 (2013).
    [2] H. Guo, Y. Hosaka, H. Seki, T. Saito, N. Ichikawa, and Y. Shimakawa, J. Solid State Chem. 246, 199-202 (2017).
    [3] H. Guo, Y. Hosaka, F. D. Romero, T. Saito, N. Ichikawa, and Y. Shimakawa, Inorg. Chem. 56, 3695-3701 (2017).
    [4] Y. Hosaka, N. Ichikawa, T. Saito, P. Manuel, D. Khalyavin, J. Paul Attfield, and Y. Shimakawa, J. Am. Chem. Soc. 137, 7468-7473 (2015).
    [5] H. Hosaka, N. Ichikawa, T. Saito, J. P. Attfield, and Y. Shimakawa, Phys. Rev. B 94, 104429 (2016).

    Cite this article as:

    Shimakawa Y. (2019). Oxygen Incorporation and Release Behaviors in Perovskite-Structure Oxides. In F. Kongoli, M.A. Alario Franco, J. Etourneau, S. Kalogirou, F.D.S. Marquis, R. Martins, K. Poeppelmeier, B. Raveau, Y. Shimakawa, M. Takano (Eds.), Sustainable Industrial Processing Summit SIPS2019 Volume 9: Tressaud Intl. Symp. / Solid State Chemistry for Applications and Sustainable Development (pp. 42-43). Montreal, Canada: FLOGEN Star Outreach