Editors: | F. Kongoli, S.V. Alexandrovich, D.V. Grigorievich, L.L. Igoryevich, I. Startsev, T.A. Vladimirovich |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2019 |
Pages: | 193 pages |
ISBN: | 978-1-989820-03-2 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
We will present the Raman microspectroscopic detection of bornite [Cu5FeS4] -, chalcocite [Cu2S] -, and covelitte [CuS] - bacterial interactions by Sulfobacillus thermosulfidooxidans. The absorption signals of amide I, K+-jarosite [KFe3(SO4)2(OH)6] and of the produced extracellular polymeric substances (EPS) from Sulfobacillus thermosulfidooxidans as a function of position on the surfaces of the bioleached bornite, chalcocite and covellite demonstrated their heterogeneity within the surface of the minerals. We will present a direct contact mechanism for the bioleaching of bornite [Cu5FeS4] -, chalcocite [Cu2S] -, and covelitte [CuS]. [1-2]
Raman data were collected by a LabRAM from HORIBA Jobin Yvon equipped with a CCD detector. It is equipped with an Olympus BX41 microscope 50x. The 441.1 nm excitation laser beam was provided by a Helium-Cadmium laser. The laser power incident on the sample was 20 mW and the accumulation time 15-20 min for each spectrum.
We report for the first time the v(Cu-S) of bornite and chalcocite which are intermediates in the bioleaching of chalcopyrite and the bioleaching behavior of bornite, chalcocite and covellite with the bacteria Sulfobacillus thermo sulfidooxidans by Raman microspectroscopy and compare it with that previously reported for chalcopyrite. [3-4]