Editors: | F. Kongoli, S.V. Alexandrovich, D.V. Grigorievich, L.L. Igoryevich, I. Startsev, T.A. Vladimirovich |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2019 |
Pages: | 193 pages |
ISBN: | 978-1-989820-03-2 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Iron and steel making is accompanied by generations of various types of by-products and waste materials which usually need some pre-treatment to be usable [1]. The resource efficiency, environmental, and economic benefits are vital keys to motivate the re-circulation of steel mill residues and recovery of their associated minerals as far as possible to save the virgin resources and reduce material sent to landfills. Nowadays, the steel industry pays more attention to adopt a circular economy model to reach zero waste through reuse and recycling of all by-products. In this context, briquetting can play an important role in residues re-circulation in the steel industry and circular economy [2-5]. The developed briquettes should have adequate chemical composition and mechanical strength to be suitable for usage in iron and steel production units [6, 7]. In the present study, the residues rich with lime and metallic iron are selected for developing briquettes suitable for basic oxygen furnace (BOF) implementation. The briquetting is performed with binders which have low sulfur content to enhance the recycling efficiency. Various recipes are designed and produced using lab scale hydraulic press and pilot scale roller press. The mechanical strength of the developed briquettes is evaluated using cold compression strength device and drop test. The potential of the developed briquettes on saving lime and scrap will be addressed. The gained knowledge can contribute to the enhancement of residues re-circulation in other metallurgical sectors.