Editors: | F. Kongoli, M. Calin, J.M. Dubois, K. Zuzek-Rozman |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2019 |
Pages: | 156 pages |
ISBN: | 978-1-989820-02-5 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Whether for therapeutic or aesthetic purposes, implantable medical devices have to be biocompatible and functional. Their implementation requires surgery that can be considered as a cumbersome procedure as it depends on the patient. Additionally, the osseointegration of these implantable devices has to be sustinable. Considering the example of dental implants, there are two types of implants: endosseous axial implants and supraosseous basal with lateral fixation implants on maxillofacial skeleton girders. These axial implants are manufactured by machines with standard diameters and lengths defined for all implant brands. It is the same for basal plate implants. The sustainability of these devices, in contact with living media, seems to be related to the mechanical and surface characteristics of implanted parts. The development of periodontal diseases like peri-implantites, caused by a bacterial grip, leads to the removal of the implant due to the long term destruction of the oxide layer and the bacterial corrosion of titanium. In order to understand the sustainability of dental implants, an experimental study was conducted on the determination of elastic and surface properties (roughness parameters) of various materials and for different surface conditions. The results show that the knowledge of these characteristics alone is insufficient to understand the sustainability of implanted devices. A biological improvement of the surface condition is necessary to avoid the loss of osseointegration by bacterial attack.