Editors: | F. Kongoli, M. Calin, J.M. Dubois, K. Zuzek-Rozman |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2019 |
Pages: | 156 pages |
ISBN: | 978-1-989820-02-5 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Cu-Ni alloys have gained interest as bulk and nanoparticles (NPs) primarily due to their catalytic and magnetic properties. Different modeling methods employed before for computations of chemical-order were limited to Cu-Ni NPs consisting of few hundred atoms. The present study uses the highly efficient statistical-mechanical free-energy concentration expansion method (FCEM [1]), combined with coordination-dependent bond-energy variations (CBEV [2]), and the coarse-grained layer (CGLM [3]) models for the case of CuNi truncated-octahedrons (TO). This quite efficient semi-analytical methodology enables the exploration of chemical-order configurations and transitions between them in much larger particle sizes and over broad ranges of composition and temperature. Furthermore, in spite of free-atom electronic-relaxation contributions to transition-metal cohesive-energies, numerous studies have misused the latter instead of using genuine bond-energies in modeling NP properties [4].Using the corresponding modified cohesive-energies, and depending strongly on size and composition, the following findings regarding chemical-order configurations are obtained: due to the CBEV, asymmetric Janus-like configuration (JA) is expected to be the most stable for all compositions only for the 201, 586 and 1029-atom TO sizes. At elevated temperatures, they transform into quasi-mixed configurations (QM). For larger TOs, core-shell (CS) configurations start to stabilize in narrow ranges of elevated temperatures and intermediate compositions, and become progressively stable at increasingly wider ranges. Three types of transitions are revealed: JA-CS, CS-QM, and JA-QM, yielding the first comprehensive Cu-Ni nanophase-separation diagrams. The use of unmodified cohesive energies leads to significantly altered transition temperatures, demonstrating the importance of the commonly ignored modification. Preliminary results for Cu-Ni-Pd TOs reveal a considerable impact of Pd alloying on the chemical-order diagrams, particularly the suppression of JA in favor of CS configurations.