Editors: | F. Kongoli, H. Inufusa, C. Amatore, H.Y. Chen, W.H. Huang, T. Yoshikawa |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2019 |
Pages: | 64 pages |
ISBN: | 978-1-989820-14-8 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Reactive Oxygen/Nitrogen Species (ROS/RNS) produced by macrophages inside their phagolysosomes are closely related to immunity and inflammation by being involved in the removal of pathogens, altered cells, etc. The existence of a homeostatic mechanism regulating the ROS/RNS amounts inside phagolyso¬somes has been invoked to account for the efficiency of this crucial process, but this could never be unambiguously documented. Here, intracellular electrochemical analysis with platinized nanowires electrodes (Pt-NWEs) allowed monitoring of ROS/RNS effluxes with sub-millisecond resolution from individual phagolysosomes. These randomly impacted onto the electrode and were inserted inside a living macrophage. This evidenced for the first time that the consumption of ROS/RNS by their oxidation at the nanoelectrode surface stimulates the production of significant ROS/RNS amounts inside phagolysosomes. These results established the existence of the long-time postulated ROS/RNS homeostasis and allowed to quantify its kinetics and efficiency. ROS/RNS concentrations may then be maintained at sufficiently high levels for sustaining proper pathogen digestion rates without endangering the macrophage internal structures.