2019-Sustainable Industrial Processing Summit
SIPS2019 Volume 13: Composite, Ceramic, Nanomaterials, Polymers, and Mathematics

Editors:F. Kongoli, M. de Campos, S. Lewis, S. Miller, S. Thomas
Publisher:Flogen Star OUTREACH
Publication Year:2019
Pages:171 pages
ISBN:978-1-989820-12-4
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2019_Volume1
CD shopping page

    The Steinmetz law: Theoretical considerations

    Marcos de Campos1;
    1UFF - FEDERAL FLUMINENSE UNIVERSITY, Volta Redonda, Brazil;
    Type of Paper: Regular
    Id Paper: 432
    Topic: 16

    Abstract:

    According to the Steinmetz hysteresis law, the power losses P vary as function of the induction B with an exponent n, where n typically is 1.6. This results in the formula P= k B^n, where k is a constant. However, the exponent n can be different according to the evaluated material. From theoretical considerations, it is expected an exponent n=2, because the Power losses are given approximately by 4 B H, for the case of square hysteresis. Here, H is the applied field. As B is the product of the permeability times the applied field H, then theoretically is expected P = K B^2.
    Reasons for n be lower than 2 are discussed. It is presented a model able to explain exponent n lower than 2. A better understanding of the Steinmetz law is useful for improvements of models able to predict the heating of steel laminations used in electric motors.

    Keywords:

    Materials; Nanomaterials; Steel;

    Cite this article as:

    de Campos M. (2019). The Steinmetz law: Theoretical considerations. In F. Kongoli, M. de Campos, S. Lewis, S. Miller, S. Thomas (Eds.), Sustainable Industrial Processing Summit SIPS2019 Volume 13: Composite, Ceramic, Nanomaterials, Polymers, and Mathematics (pp. 59-64). Montreal, Canada: FLOGEN Star Outreach