2019-Sustainable Industrial Processing Summit
SIPS2019 Volume 12: Energy Production and Secondary Batterie

Editors:F. Kongoli, H. Dodds, M. Mauntz, T. Turna, K. Aifantis, A. Fox, V. Kumar
Publisher:Flogen Star OUTREACH
Publication Year:2019
Pages:112 pages
ISBN:978-1-989820-11-7
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2019_Volume1
CD shopping page

    Metallic 2D Materials for Energy Storage

    Manish Chhowalla1;
    1UNIVERSITY OF CAMBRIDGE, Cambridge, United Kingdom;
    Type of Paper: Plenary
    Id Paper: 406
    Topic: 14

    Abstract:

    Two dimensional (2D) materials provide well-defined ion diffusion pathways for sodium and other ions, facilitating ion insertion and movement, which is difficult to achieve in conventional 3D electrode materials. As a result, high power densities can be achieved in 2D electrodes with rapid ion and electron transport. Although heavier than lithium, Na+ and K+ have key advantages in addition to their lower price – their lower desolvation energy, compared to smaller Li+, improves kinetics of ion insertion into the electrode and may lead to higher power. Multivalent ions, such as Mg2+ and Al3+, may store 2 – 3 electrons per ion, but their movement in 3D bulk or porous solids is restricted due to the limited lattice space, leading to slow charge/discharge processes and inferior stability of charge storage devices. Metallic 2D materials offer distinct advantages for battery electrodes. They are: i) highly conductive, with high density of states at the Fermi level and metal-like carrier densities; ii) chemically diverse and tailorable, allowing for systematic variation of both their intrinsic composition and their post-synthetically modified surface chemistry; iii) exceptionally rigid, with bending stiffness values comparable to graphene that are ideally suited for flexible energy storage devices; and iv) hydrophilic, allowing for co-assembly with polar species and enabling sustainable, green processability. These attributes make them especially promising for next-generation of rechargeable batteries with improved storage capability, faster charging and much longer lifetimes, even when combined with larger and higher charged ions. In this presentation, I will present our recent progress on synthesis of battery electrodes with metallic 2D materials and their performance as supercapacitors, electrochemical actuators and batteries.

    Keywords:

    Energy; Engineering; Li-Ion; Lithium; Materials; SecondaryBattery;

    References:

    .

    Cite this article as:

    Chhowalla M. (2019). Metallic 2D Materials for Energy Storage. In F. Kongoli, H. Dodds, M. Mauntz, T. Turna, K. Aifantis, A. Fox, V. Kumar (Eds.), Sustainable Industrial Processing Summit SIPS2019 Volume 12: Energy Production and Secondary Batterie (pp. 55-56). Montreal, Canada: FLOGEN Star Outreach