Editors: | F. Kongoli, F. Marquis, N. Chikhradze, T. Prikhna |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2019 |
Pages: | 174 pages |
ISBN: | 978-1-989820-10-0 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Molecular materials containing donor and acceptor moieties recently synthesized at the laboratories of the presenting author, and applied in organic light emitting diodes (OLEDs) as emitters and hosts will be reported.
The derivative of 3-(trifluoromethyl)benzonitrile and 3,3' -bicarbazole was found to exhibit both delayed fluorescence and exciplex-forming properties [1]. Warm-white OLED based on this material showed external quantum efficiency (EQE) of ca. 20 %.
The derivative of acridan and dicyanobenzene was found to be an efficient emitter, exhibiting both thermally activated delayed fluorescence (TADF) and aggregation induced emission enhancement. Green OLED fabricated using this emitter exhibited maximum current, power efficiency and EQE of 68 cd/m2, 62 lm/W and 22.5 %, respectively [2].
A series of carbazole-quinoxaline-carbazole derivatives exhibiting TADF and mechanochromic luminescence properties were synthesized and studied. Green-blue to green-yellow TADF OLEDs fabricated by solution processing demonstrated EQE up to 10.9% and luminance of 16760 cd m-2 [3].
Deep-blue OLED based on triplet-triplet annihilation with EQE of 14.1% was fabricated [4]. This was done by utilization of the derivatives cyanophenyl and ditertbutylcarbazolyl which were substituted with triphenylbenzene and different substitution patterns as hosts and guests of the emissive layer.
This research was funded by the European Social Fund according to the activity "Improvement of researchers" qualification by implementing world-class R&D projects of Measure No. 09.3.3-LMT-K-712.