Editors: | F. Kongoli, F. Marquis, N. Chikhradze, T. Prikhna |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2019 |
Pages: | 174 pages |
ISBN: | 978-1-989820-10-0 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Biological surfaces in nature (e.g., spider silk, cactus spine, beetle back, butterfly wing, lotus leaf, etc.) have inspired us to design functional materials and surfaces [1-5]. Inspired by the structures of spider silk for directional water collecting ability, a series of bioinspired gradient fibers has been designed by integrating fabrication methods and technologies, e.g., dip-coating, Rayleigh instability break-droplets, electrospinning, and wet-assembly, etc.. Thus, this allows roughness and curvature, gradient spindle-knots, a star-shape wettable pattern, etc. for droplet transport and harvesting. Inspired by cactus spines, the conical spines with periodic roughness or micro- and nanostructures can achieve high-efficiency condensed-droplet transport. Some dynamic gradient surfaces are also designed, e.g., photo-thermal organogel surfaces for control of droplet transport in various routes via light radiation, and magnetic-induced dynamic tilt-angle pillar array for driving of the droplet shedding-off in directions. The bioinspired gradient surfaces can be further designed to exhibit robust transport and control of droplets. These bioinspired gradient surfaces would be promising applications into anti-icing, liquid transport, anti-fogging/self-cleaning, water harvesting, etc.