Editors: | F. Kongoli, M. Gaune-Escard, J. Dupont, R. Fehrmann, A. Loidl, D. MacFarlane, R. Richert, M. Watanabe, L. Wondraczek, M. Yoshizawa-Fujita, Y. Yue |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2019 |
Pages: | 177 pages |
ISBN: | 978-1-989820-00-1 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Rare earths (RE) elements are becoming very important for current and future industrial products, such as computers, LCD screens and lasers, but also for so-called "green technologies", such as wind turbines, electric cars and bicycles [1]. Due to highly volatile markets, the high environmental impacts, and the geopolitical challenges of raw material supply and production, many efforts are made worldwide to develop new recycling processes. Only a few countries have access to neodymium; China dominates the world production with above 90 % of the whole market. According to a recent study of the European Union [2] and the US Department of Energy [3], the RE elements are the most critical raw material resource. Despite extensive research activities in this field, only about 1 % of the RE elements are currently recycled. [4]
Currently, different processes are used or investigated for the recovery of neodymium, such as hydrometallurgy, glass-based method, and direct melting.
In this work, we investigate the selective recovery of neodymium by using pyrochemical based processes. Anodically, Nd is dissolved selectively from the NdFeB matrix and metallic Nd is recovered at the cathode. It was shown that electrolyte composition is crucial as it impacts the electrolysis efficiency significantly. Mass balance and Nd recovered analysis confirms the results of the electrochemical investigations and electrolysis runs.