Editors: | F. Kongoli, M. Gaune-Escard, J. Dupont, R. Fehrmann, A. Loidl, D. MacFarlane, R. Richert, M. Watanabe, L. Wondraczek, M. Yoshizawa-Fujita, Y. Yue |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2019 |
Pages: | 177 pages |
ISBN: | 978-1-989820-00-1 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
The balance between the attractive and repulsive forces between the ions in room temperature ionic liquids (RTILs) and their high-melting molten salts (MSs) analogs is responsible for their cohesive energy density (ced), their internal pressures (Pint) and their surface tensions (σ). Therefore, definite relationships exist between these quantities pertaining to the ionic liquids. For 33 RTILs and 53 MSs for which all the data are available, the relationships are linear and take the form ced = a + b(σV-1/3) and Pint = p + q(σV-1/3). The quantity σV-1/3, called the Gordon parameter, has the dimension of a pressure, as do ced and Pint. The slopes b ≈ 67 and q ≈ 25 are the same for these two kinds of ionic liquids, because the electrostatic interactions between the ions are the dominant attractive forces. The internal energy of the ionic liquid is inversely proportional not to its volume, but to a higher power of it, so that the cohesive (or internal) energy divided by the volume (the ced) is more than twice its volume derivative (the internal pressure, Pint). The established relationships can help estimate unknown quantities among the three dealt with here from the other two.