Editors: | F. Kongoli, M. Gaune-Escard, J. Dupont, R. Fehrmann, A. Loidl, D. MacFarlane, R. Richert, M. Watanabe, L. Wondraczek, M. Yoshizawa-Fujita, Y. Yue |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2019 |
Pages: | 177 pages |
ISBN: | 978-1-989820-00-1 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Most of reactive metals and their alloys are produced by fused salt electrolysis or metallothermic reduction in molten salts. The feed material for both of these processes is the anhydrous chloride of the metal under consideration produced by the dehydration of the form of hydrate. A critical step in the production of most reactive metals requires rigorous thermodynamic analysis. Thermodynamic data for most of the reactive metal chloride hydrates have not been measured. Improper dehydration of the metal chloride hydrate may lead to a prohibitive amount of hydroxychloride, oxychloride, and finally oxide. To prevent hydrolysis, a certain pressure of hydrogen chloride must be maintained to supress or reverse hydrolysis. In this investigation, it is demonstrated that by careful application of the phase rule, sigma function, and utilization of prediction and estimation techniques will lead to a reliable technique for the estimation of the hydrate vapour pressure. These techniques will also lead to prediction of the necessary hydrogen chloride presence to avoid hydrolysis. Thermodynamic data, including heat capacities, standard entropies, and enthalpies, are estimated/predicted for all conceivable intermediate hydrate compounds. Estimations are based on published data, as well as trends proven in similar systems. The thermodynamic estimations and predictions have been published for magnesium chloride, neodymium trichloride, dysprosium chloride and is a continuous program for rare earth metal chlorides.