2018 - Sustainable Industrial Processing Summit & Exhibition
4-7 November 2018, Rio Othon Palace, Rio De Janeiro, Brazil
Seven Nobel Laureates have already confirmed their attendance: Prof. Dan Shechtman, Prof. Sir Fraser Stoddart, Prof. Andre Geim, Prof. Thomas Steitz, Prof. Ada Yonath, Prof. Kurt Wüthrich and Prof. Ferid Murad. More than 400 Abstracts Submitted from about 60 Countries.
Abstract Submission
Login

DETAILLED PROGRAM OVERVIEW

Back
    A Novel Approach to Methods and Tools of Optical Spectroscopy of Viruses
    Paata Kervalishvili1;
    1GEORGIAN TECHNICAL UNIVERSITY, Tbilisi, Georgia;
    PAPER: 93/Manufacturing/Regular (Oral)
    SCHEDULED: 14:00/Wed./Bossa (150/3rd)



    ABSTRACT:
    Study and detection of viruses using their oscillation optical spectrum is a revolutionary step in the development of novel methods of measurement and treatment for different diseases in modern health care. For strengthening the identification and characterization of viruses, elaboration of new instrumental designs for specific clinical needs and building up extensive databases with probabilistic identification algorithms, optical spectrometry has real potential as reliable characterization and treatment technique of viruses and virus-like particles (VLPs). Advantages of spectrometry methods before traditional methods of diagnostics are: minimized expenditure of materials, speed of response, elimination of long stages of sample preparation, elimination of the need to use of labeled reagents and chromogenic substrates, and possibility of detecting rarely cultivated forms of viruses. Nowadays, due to issues of proliferation of dangerous viruses such as Ebola, flu, and others, it is extremely important to elaborate novel procedures of biological security and relevant optical nanoinstruments (sensors). Work which was done by the international team includes: elaborating firstly in the world the methods for measurement of spectral characteristics of viruses, and VLPs with aim of their later treatment; monitoring oscillation characteristics of viruses with "Improvement the Sum Frequency Generation method"; investigating the possibilities of Pico and Femto second laser and other sources for performing of nonlinear measurements; developing simulation methods of oscillation effects in viruses and VLPs; elaborating the schemes of working high effective spectrometric sensory networks; studying common properties of nano-scale virus-like particles, and elaborating the basic concept of the new method for estimation unique vibration/oscillation properties, which determines the "fingerprints" of pathogenic micro-organisms, especially viruses [1-5].

    References:
    [1] Paata J. Kervalishvili, Tamar N. Bzhalava, Investigations of Spectroscopic Characteristics of Virus-Like Nanobioparticles, American Journal of Condensed Matter Physics, Vol. 6 No. 1, (2016), pp. 7-16.
    [2] P.J. Kervalishvili, T.N. Bzhalava, Modeling of Vibrational/Spectroscopic Properties of Virus-Like Nanoparticles, International Sci. Conference eRA - 11 The SynEnergy Forum, Piraeus Greece, 21- 23 September (2016), http://era.teipir.gr
    [3] P.J. Kervalishvili, Optical Spectroscopy Study of Oscillation of Pathogenic Bionanoobjects (keynote), NANOTEK-2017 March 11th-13th, (2017), Hamburg, Germany.
    [4] M. Mostafavi, A. Tadjeddine, C. Humbert, P.Kervalishvili, T. Bzhalava, T. Berberashvili, "Nonlinear Optical Spectroscopy of Nano-Bio-Materials", San-Diego State University Conference, September 6-7,(2015).
    [5] M. Mostafavi, A. Tadjeddine, C. Humbert, P. Kervalishvili, T.Bzhalava, V. Kvintradze, T. Berberashvili, Optical Spectroscopy of Nanobioobjects for Sensory Applications, "2015 NanoCon (NanoTech) ISTC- Korea Conference", Seoul 2-6 November, (2015).