2018 - Sustainable Industrial Processing Summit & Exhibition
4-7 November 2018, Rio Othon Palace, Rio De Janeiro, Brazil
Seven Nobel Laureates have already confirmed their attendance: Prof. Dan Shechtman, Prof. Sir Fraser Stoddart, Prof. Andre Geim, Prof. Thomas Steitz, Prof. Ada Yonath, Prof. Kurt Wüthrich and Prof. Ferid Murad. More than 400 Abstracts Submitted from about 60 Countries.
Abstract Submission
Login

DETAILLED PROGRAM OVERVIEW

Back
    Application of Ionic Liquids in Oxidative and Acidic Catalysis
    Nina Kuznetsova1; Nikolay Adonin1; Bair Bal'zhinimaev1;
    1BORESKOV INSTITUTE OF CATALYSIS, Novosibirsk, Russian Federation;
    PAPER: 165/Molten/Regular (Oral)
    SCHEDULED: 11:20/Tue./Bossa (150/3rd)



    ABSTRACT:
    Ionic liquids (IL) are drawing increasing and considerable attention in the field of catalysis as perfect, non-volatile, thermally stable solvents and media for liquid phase selective reactions [1]. We represent here examples from the catalytic chemistry, where ILs has been successfully used for improving two industrially important reactions. Well-known commercial synthesis of terephthalic acid (TPA) is based on aerobic oxidation of p-xylene in acetic acid solution of the Co/Mn/Br catalyst, that followed by the cost and energy-consuming hydropurification of the crude TPA product from p-carboxybenzaldehyde (4-CBA) [2]. We showed that addition of ILs (dialkylimidazolium acetate and bromide) and ammonium acetate changes properties of the conventional solvent to improve solubility and accelerate oxidation of 4-CBA to TPA. Efficient combinations of the additives and appropriate reaction conditions have been selected to obtain the target product with 4-CBA content below 25 ppm [3]. Positive effect is caused by excellent solvating ability of ILs for TPA and 4-CBA. The designed catalytic systems can be applied to obtain high-quality TPA just after oxidation stage, without the hydropurification. The next example is related to the alkylation of benzene with dodecene-1 for production of linear alkylbenzene catalyzed with binary 1-butyl-3-methylimidazolium chloride-aluminum chloride system. This catalyst showed high performance in the synthetic detergent not only from neat dodecene-1, but from the feedstock containing a mixture of C10-C13 alkanes and C10-C13 alkenes. The best results have been obtained when the mole fraction of [BMIM]Cl ionic liquid is around 40%. Furthermore, the optimal reaction conditions, such as benzene/alkene ratio (1.6-3) and temperature (30-40°C), have been found. In this case, a very high 98-99% yield of detergent is achieved [4].

    References:
    [1] C. Dai, J. Zhang, C. Huang and Z. Lei, Chem. Rev. 117 (2017) 6929-6983.
    [2] C. Park, J. R. Sheehan, In Kirk-Othemer Encyclopedia of Chemical Technology, 4th Ed. V.18, New York, 1996, pp. 478-491.
    [3] N. I. Kuznetsova, B. S. Bal'zhinimaev, A. Bhattacharyya, J. T. Walenga, ChemistrySelect, 2 (2017) 11815-11820.
    [4] M.G. Riley, A. Bhattacharyya, N.Y. Adonin, M.N. Timofeeva, S.A. Prikhodko, B.S. Bal'zhinimaev, Benzene alkylation using acidic ionic liquids. US Patent 9328037.