Editors: | F. Kongoli, M. de Campos |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2018 |
Pages: | 184 pages |
ISBN: | 978-1-987820-96-6 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
The aim of this work is present of the influences of composition of the material and manufacturing technology conditions of the photovoltaics devices (OPv) with the organic and hybrid bulk heterojunctin on the active layers properties and cells performance. The layers were produced by use small molecular compounds: the metal-phthalocyanine (MePc) and perylene derivatives (PTCDA) and the titanium dioxide (TiO<sub>2</sub>) nanoparticles. Two kinds of metal phthalocyanines (NiPc, TiOPc) were used as donor material and as a acceptor was used pperylenetetracarboxylic dianhydride (PTCDA). The used manufacturing technique allows to using thin layers of materials in a fast deposition process. Bulk heterojunction was create by simultaneous applying the MePc:PTCDA materials during the temperature evaporation of the mixture of components.
The research was based on the estimate of composition of bulk heterojunction, the examination of the surface morphology of the used layers and optical properties studies of the heterojunction and its implementation to photovoltaic architecture. The produced photovoltaic cells parameters were determined on the basis of current - voltage characteristics.
The researches of structure of obtained layers were conducted by usingscannind electron microscope (SEM) transmittion electron microscopy (TEM). The quantitative determination of surface topography by determining RMS and Ra coefficients were perform by atomic force microscopy (AFM). In order to determining the optical properties of films the UV-Visible spectroscope have been utilize. Current - voltage characteristics were to determine the basic photovoltaic parameters using a dedicated device.
The paper describes the influence of the individual components share of the bulk heterojunction on its structure, optical properties and morphology of surface. In addition allows for linking of active layers properties with the parameters of the photovoltaic cells. The obtain results suggest the possibility of developing the utilizing materials and technology in the further works on photovoltaic structures.