Editors: | F. Kongoli, F. Marquis, P. Chen, T. Prikhna, N. Chikhradze |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2018 |
Pages: | 392 pages |
ISBN: | 978-1-987820-92-8 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Fibers made purely of aligned carbon nanotubes (ACNT) exhibit remarkable properties, such as high specific strength, stiffness, electrical and thermal conductivity, as well as extreme flexibility [1-3]. The uniqueness of ACNT fibers lies in the fact that during the application of certain potentials they undergo the unusual process of swelling [4]. Since this process leads to the increase in radial dimension and effective surface area, swollen ACNT fibers can be considered as advantageous materials for electrodes in ion batteries and supercapacitors. In this paper, we demonstrate that through the process of swelling, the effective surface area of ACNT fiber can be significantly increased. The effect of swelling on the enlargement of effective surface area is extensively investigated by means of chronoamperometry in the function of applied potential and time of potential application. It is shown that by the careful choice of swelling process parameters, it is possible to increase the effective surface area of ACNT fiber up to 450 times when compared with the initial geometric area of the fiber, reaching the specific effective surface area of 7.5 m2 g-1.