Editors: | F. Kongoli, F. Marquis, P. Chen, T. Prikhna, N. Chikhradze |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2018 |
Pages: | 392 pages |
ISBN: | 978-1-987820-92-8 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
In civil engineering, the development of new materials has been highly dynamic, when taking into account the progress of research as well as the high demand driven by society. Due to the constantly diminishing primary natural resources, the global economy is increasingly focusing on recycling waste and reintroducing it into the circuit of creating new materials with improved properties. In this context, the current paper aims to present advanced experimental designs and optimization methods as alternatives to existing ones, as they not only involve very high additional costs, but whose capacity is also being surpassed. Thus, we present a set of methods that by their specific nature contribute to diminishing the time of the research, development, and obtaining of new materials, but also to the drastic reduction of the costs related to the experimental calibration. "It's about Design of Experiments", together with "Response Surface Methodology", offers to researchers an advanced approach to experimental designs with the possibility of quantifying the influence of different factors on this process, and the needed combination to optimize certain characteristics of them. Artificial Neural Networks are another way to obtain this time by learning from the examples of the required combination to optimize. A comparison of the two methods will also be presented. All these will have both a theoretical approach and also one based on the scientific work of the authors, and not only using these methods. Thus, the new materials developed in civil engineering will be produced using experimental design adapted to the complexities of physical phenomena, which are often unknown, involved in this process, and also optimizing their properties by obtaining some characteristics that respond to the requirements of safety, security, and durability.