Editors: | F. Kongoli, A. G. Mamalis, K. Hokamoto |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2018 |
Pages: | 352 pages |
ISBN: | 978-1-987820-88-1 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
The liberalization of the electricity market, in conjunction with actual environmental constraints and provisions, led to considerations for combined urban and electricity market developments promoting buildings' energy autonomy, from the perspective of transforming regional and individual electricity consumers to producer-consumer (prosumer) actors. Such a development favors renewable energy sources, penetration growth, as well as combined electric-thermal production applications with important beneficial environmental issues [1]. The existing incentives for renewable energy exploitation and carbon leakage regulations are expected to be attenuated through the large introduction of prosumers enabling energy and ancillary services optimization by extended combined load management-unit commitment operation based on bid procedures [2]. In this context, energy storage devices are expected to play an important role in increasing the impact of emerging fuels such as natural gas and hydrogen. Such a trend will be facilitated by the spreading of electric traction in all the expected transportation mediums, in order to meet the environmental requirements foreseen. To that respect, battery and fuel cell technologies involved in hybrid/electric vehicles may equally serve the network load leveling issues [3]. Moreover, the transmission and distribution electric network activities will transit to a commonly available commodity, while the necessary extensions and reinforcements will be guided by local marginal price differences. The variety of interacting resources, as well as globalization of tasks and procedures will enable large scale economies and reliability enhancements. The extended distributed regulation necessary will be in close interaction with the centrally controlled large production units through smart grid technologies accommodating the important communication exchanges by convenient internet applications of smart buildings and smart cities underway [4].
The paper undertakes an overview of existing environmental constraints as well as current energy resources developments in the electric energy production sector. Furthermore, technological aspects of available devices involved in small hybrid production units are reported and discussed. Finally, the case study of a typical small autonomous hybrid production plant, convenient for a building prosumer activity, is presented.