Editors: | F. Kongoli, A. G. Mamalis, K. Hokamoto |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2018 |
Pages: | 352 pages |
ISBN: | 978-1-987820-88-1 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Shape memory alloys (SMAs) belong to smart materials being employed in several kinds of applications [1]. Modeling and simulations are essential issues to be considered for proper designs of these systems. In this regard, fatigue phenomenon is a special subject that needs to be investigated. In general, SMAs exhibit two kinds of fatigue: functional fatigue, related to the decrease of the functional properties; and structural fatigue, that is characterized by the nucleation and growth of microcracks which can lead to fracture [2]. This paper discusses a macroscopic three-dimensional constitutive model that describes functional fatigue in shape memory alloys. Comparisons between numerical and experimental uniaxial results are performed for the validation of the proposed model. In addition, general numerical simulations are presented in order to explore the general thermomechical behavior of SMAs.