Editors: | F. Kongoli, A. G. Mamalis, K. Hokamoto |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2018 |
Pages: | 352 pages |
ISBN: | 978-1-987820-88-1 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Three-dimensional (3D) printing is often considered synonymous with additive manufacturing. Several types of 3D printer are known where polymers are usually used. Stereolithography (SLA) employs a single beam laser to polymerize or crosslink a photopolymer resin. By drawing on the liquid photopolymer resin with a light beam, thin layers of polymer are stacked layer by layer. Elastomer based on polydimethysiloxanes (PDMS) are an important class of materials, because of properties such as chemical inertness, flexibility, and optical transparence. In addition, they have a very low surface tension (20.4 mN/m) and glass transition temperatures (146 K). it is possible to print a support material that holds the PDMS prepolymer in place until it can be cured by UV light using a photoactive cross-linking agent. It is possible to graft photoactive group on PDMS backbone and obtain a new UV curable polymer [1,2].
The aim of the presented work is to obtain photopolymers based on PDMS [3]. For this purpose, we have conducted a hydrosilylation reaction of polymethylhydrosiloxane (PMHS) with allyl acrylate and vinyltriethoxysilane in the presence of Karstedta's catalyst in Toluene. The obtained polymer is liquid, which is well soluble in organic solvents with specific viscosity ηsp = 0.4. The end of reaction was tested by FTIR, where peak at 1260 cm-1 disappears, which belongs to Si-H bonds. After this the polymer is distilled in vacuum, about 1% of a cross-linking agent was added and curried by UV during 1 h.