Editors: | F. Kongoli, H. Inufasa, M. G. Boutelle , R. Compton, J.-M. Dubois, F. Murad |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2018 |
Pages: | 216 pages |
ISBN: | 978-1-987820-84-3 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
To curb the negative effect of carbon dioxide as a greenhouse gas, an interesting approach is the utilization of Carbon Capture and Conversion (CCC) methodologies. These recycling technologies are focused on the use of CO<sub>2</sub> waste as a feedstock for the production of industrially relevant chemicals. In the past years, increasing attention has been devoted to the electrochemical conversion of CO<sub>2</sub>, which would combine the utilization of excess electric energy from intermittent renewable sources with the selective conversion of CO<sub>2</sub> into added value products. Furthermore, it would be possible, in order to reduce the costs, to use the excess of the daily produced electricity, not matching actual demand energy, that is usually lost or not properly used. Researches have shown that several products, including carbon monoxide, formic acid, methane, methanol, ethylene and oxalic acid, can be obtained by this process. Furthermore, it has been shown that carbon dioxide can be introduced in the backbone of other molecules, generating fine chemicals with high economic value, such as anti-inflammatory drugs, by cathodic reduction in aprotic solvents
In this work, various routes for the electrochemical conversion of carbon dioxide will be presented and discussed from both a scientific, technical and economic point of view, such as the synthesis of formic acid in water (in conventional and pressurized cells) or the electrocarboxylation of aromatic ketones and benzyl chlorides in organic solvents, in order to illustrate the current scenario.