Editors: | F. Kongoli, M.-C. Gomez-Marroquin, M. Contrucci, N. Lacerda, F. V. Cancado, M. de Souza, R. Valladares |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2018 |
Pages: | 184 pages |
ISBN: | 978-1-987820-82-9 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Proper understanding and control of accumulation, drainage, and heat transfer of hot metal and slag in BF (Blast Furnace) hearth is essential for a stable and efficient blast furnace operation. Abnormal drainage behavior may lead to high liquid build up in the hearth. Operation problems are normally encountered if the liquid levels exceed a critical limit when hearth coke and deadman start to float. This not only causes sluggish or irregular descent of burden material, but also results in irregular casting intervals, damage to lining, low blast intake, and furnace pressurization. Similarly, hot metal temperature is an important parameter to be controlled in the BF operation; it should be kept at an optimal level to obtain desired product quality and a stable BF performance. Predicting hot metal temperature variation during the tapping process is extremely useful, since it gives a clear picture to the operator about the tapping operation and prevents any panic. At the same time, it allows the correction of process parameters in case of any major deviation. If the metal temperature is too high or too low, it may directly affect the process and cost efficiency of BF as well as BOF (Basic Oxygen Furnace) plants. Efforts have continuously been made for BF process optimization to improve its productivity, energy efficiency, environment, and product quality. The control of the hot metal / slag accumulation, drainage pattern, and tapping temperature is of great importance for optimizing the BF process and making it productive, energy efficient, and cost competent. Therefore, it is utmost important for furnace operators to understand the mechanisms governing the liquid flow, accumulation, drainage and heat transfer between various phases in BF hearth. As it's extremely difficult to carry out any direct measurement due to the hostile conditions in the hearth with chemically aggressive hot liquids, estimation, and simulation based on rules of physics and mathematical calculations, taking into account available operating parameters is the only viable solution. The objective here is to develop a mathematical model to simulate the variation in hot metal/slag accumulation and temperature during the taping of the furnace, based on: the computed drainage rate; production rate; mass balance; heat transfer between metal and slag, metal, and solids; slag; solids; as well as the various zones of metal and slag itself. [1,3,4]