2017-Sustainable Industrial Processing Summit
SIPS 2017 Volume 8: Surfaces and Interfaces(SISAM), Composite, Ceramic and Nanomaterials

Editors:Kongoli F, Braems I, Demange V, Dubois JM, Pech-Canul M, Patino CL, Fumio O
Publisher:Flogen Star OUTREACH
Publication Year:2017
Pages:249 pages
ISBN:978-1-987820-75-1
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2017_Volume1
CD shopping page

    The Effect of Alkali Concentration on the Structural and Magnetic Properties of Mn-Ferrite NanoparticlesPrepared via the Coprecipitation Method

    Somayeh Pourbafarani1;
    1ISFAHAN UNIVERSITY, Tehran, Iran (Islamic Republic of Iran);
    Type of Paper: Regular
    Id Paper: 256
    Topic: 18

    Abstract:

    Chemistry plays an important role in the development of novel nanostructural materials ,and a simple control of solution chemistry can lead to speific changes in crystallite properties. One of the chemical techniques in the synthesis of nanoparticles is coprecepitation.The advantages of using this method are that the structural and morphological properties of nanoparticles can be varied by controlling the chemical and physical parameters of the reaction medium such as the alkali concentration, reaction temperature, molar ratio of salts, ionic strength of aqueous medium, and reaction time.
    In this work, MnFe2O4 nanoparticles were synthesised using the coprecipitation method under two different NaOH concentration settings as reaction agents at 355 K (82 C). Structural and morphological properties of the nanoparticles were examined using X-ray diffraction and a scanning electron microscope. The decrease of NaOH concentration led to the increase of particle size, more crystallinity and a narrower particle size distribution.
    The results were evaluated from a chemical point of view and were based on the supersaturation level, which was influenced by alkali concentration. It was concluded that the higher NaOH concentration led to a more rapid nucleation and more random cation distribution.. The magnetic properties of the nanoparticles examined by permeameter and faraday-balance equipment were consistent with the structural and morphological properties of the particles.

    Keywords:

    Characterization; Crystallization; Nanoparticles;

    Cite this article as:

    Pourbafarani S. (2017). The Effect of Alkali Concentration on the Structural and Magnetic Properties of Mn-Ferrite NanoparticlesPrepared via the Coprecipitation Method. In Kongoli F, Braems I, Demange V, Dubois JM, Pech-Canul M, Patino CL, Fumio O (Eds.), Sustainable Industrial Processing Summit SIPS 2017 Volume 8: Surfaces and Interfaces(SISAM), Composite, Ceramic and Nanomaterials (pp. 208-209). Montreal, Canada: FLOGEN Star Outreach