2017-Sustainable Industrial Processing Summit
SIPS 2017 Volume 5. Marquis Intl. Symp. / New and Advanced Materials and Technologies

Editors:Kongoli F, Marquis F, Chikhradze N
Publisher:Flogen Star OUTREACH
Publication Year:2017
Pages:590 pages
ISBN:978-1-987820-69-0
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2017_Volume1
CD shopping page

    Layer-by-Layer Assembled Nanocomposite Films for Energy Systems

    Maria A. G. Soler1;
    1UNIVERSIDADE DE BRASILIA, Brasilia, Brazil;
    Type of Paper: Keynote
    Id Paper: 77
    Topic: 43

    Abstract:

    The assembly of nanoobjects or "building blocks" already displaying useful functions, leads to new generations of multifunctional nanomaterials with interesting fundamental properties, as well as promising applications in energy conversion, storage devices, and chemical sensors. Moreover, bottom-up approaches with advantages of cost effective, large area fabrication, no-limitation on substrate type or shape, simple processes and automation facilities, such as the layer-by-layer (LbL), allow designing of all-organic and organic/inorganic hybrid multilayers with nanometric control over morphology and architecture. Resulting nanohybrid structures not only combine attractive functionalities of each component but also show synergetic characteristics. The LbL technique is based on the sequential adsorption of ultrathin multilayered films of nanoobjects (conjugated polymers, proteins, clays and minerals, DNA, carbon nanotubes, graphene, and metal or metal oxide nanoparticles), from their colloidal solutions to solid surfaces.
    This talk will summarize new initiatives that have been more recently proposed for colloidal nanoparticles and respective arrays with polyelectrolytes, in either mono and multilayered LbL structures. As a main role, the LbL processing has enabled one to control the volume fraction and spatial distribution of nanoparticles within the multilayers, which in turn permits one to reach synergistic effects and pre-designed end properties. For example, the charge transport within such films is sensitive to nanoparticle-polyelectrolyte interfaces that can be precisely controlled by physicochemical parameters of the LbL assembly. Applications leading to future developments of capacitors electrodes and chemical sensors will be presented and discussed.

    Keywords:

    Nanocomposites; Nanomaterials; New and advanced materials; New and advanced technology;

    References:

    [1] J.M. Slocik, R. McKenzie, P. B. Dennis and R. R. Naik: Creation of energetic biothermite inks using ferritin liquid protein, Nature Comm., DOI: 10.1038/ncomms15156, (2017), 1-7.
    [2] C. Balazs, T. Emrick and T. P. Russel: Nanoparticle Polymer Composites: Where Two Small Worlds Meet, Science, 314 (2006), 1107-1110.
    [3] D. Toulemon, M. V. Rastei, D. Schmool, J. S Garitaonandia, L. Lezama, X. Cattoën, S. Bégin-Colin and P. B. Pichon,: Enhanced Collective Magnetic Properties Induced by the Controlled Assembly of Iron Oxide Nanoparticles in Chains, Adv. Funct. Mater., 26 (2016), 2454-2462.
    [4] X. Zhang, L. Hou and P. Samorı: Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials, Nature Comm., DOI: 10.1038/ncomms11118 (2016),1-14.
    [5] Y. Dong, Z-S. Wu, W. Ren, H-M. Cheng and X. Bao: Graphene: A promising 2D material for electrochemical energy storage, Science Bulletin, 62 (2017), 724-740.
    [6] A. O. T. Patrocinio, L.G. Paterno and N.Y. M. Ilha: Role of Polyelectrolyte for Layer-By-Layer Compact Tio2 Films in Efficiency Enhanced Dye-Sensitized Solar Cells. J. Phys. Chem. C, 114 (2010), 17954-17959.
    [7] P. T. Hammond: Form and Function in Multilayer Assembly: New Applications at the Nanoscale, Adv. Mater., 16 (2004), 1271-1293.
    [8] F. L. Leite, L. G. Paterno, C. E. Borato, P. S. P. Herrmann, O. N. Oliveira L. H. C. and Mattoso: Study on the Adsorption of Poly(O-Ethoxyaniline) Nanostructured Films Using Atomic Force Microscopy, Polymer, 46 (2005), 12503-12510.
    [9] L. H. C. Mattoso, V. Zucolotto, L. G. Paterno, R. van Griethuijsen, M. Ferreira, S. P. Campana and O. N. Oliveira Jr.: Self-assembly Films of Polyacids and Doped Poly(o-alkoxyanilines), Synth. Met., 71 (1995), 2037- 2038.
    [10] J. T. O’Neal, M. J. Bolen, E. Y. Dai and J. L. Lutkenhaus: Hydrogen-bonded Polymer Nanocomposites Containing Discrete Layers of Gold Nanoparticles, J. Colloid Interface Sci., 485 (2017), 260–268.
    [11] T. T. Thuy, Next Generation Magnetic Nanoparticles for Biomedical Applications. Magnetic Nanoparticles from Fabrication to Clinical Applications, 2012, Edited by N. T. K. Thanh, Taylor & Francis Group. Boca Raton, FL.
    [12] G. Decher: Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, 277 (1997), 1232-1237.
    [13] K. Ariga, J. P. Hill and Q. Ji: Layer-by-layer Assembly as a Versatile Bottom-Up Nanofabrication Technique for Exploratory Research and Realistic Application, Phys. Chem. Chem. Phys., 9 (2007), 2319-2340.
    [14] G. B. Alcantara, L. G. Paterno, A. S. Afonso, R. C. Faria, M. A. Pereira-da-Silva, P. C. Morais, and M. A. G. Soler: Adsorption of Cobalt Ferrite Nanoparticles Within Layer-By-Layer films: A Kinetic Study Carried Out Using Quartz Crystal Microbalance, Phys. Chem. Chem. Phys., 13 (2011), 21233-21242.
    [15] M. A. G. Soler, L. G. Paterno and P. C. Morais: Layer-by-Layer Assembly of Magnetic Nanostructures, J. Nanofluids, 1 (2012), 101-119.
    [16] L. G. Paterno and M. A. G. Soler: Layer-by-Layer Enabled Nanomaterials for Chemical Sensing and Energy Conversion, JOM, 65 (2013), 709-719.
    [17] S. Seo, S. Lee and Y. P. Park: Automatic Layer-By-Layer Spraying System for Functional Thin Film Coatings, Rev. Sci. Instrum., 87 (2016), 036110.
    [18] G. B. Alcantara, L. G. Paterno, F. J. Fonseca, M. A. Pereira-da-Silva, P. C. Morais and M. A. G. Soler: Dielectric Properties of Cobalt Ferrite Nanoparticles in Ultrathin Nanocomposite Films, Phys. Chem. Chem. Phys., 15 (2013), 19853-19861.
    [19] G. B. Alcantara, L. G. Paterno, F. J. Fonseca, M. A. Pereira-da-Silva, P. C. Morais and M. A. .G. Soler: Layer-by-Layer Assembled Cobalt Ferrite Nanoparticles for Chemical Sensing”, J. Nanofluids, 2(2013), 175-183.
    [20] M. A. Gross, M. J. A. Sales, M. A. G. Soler, M. A. Pereira-da-Silva, M. F. P. da Silva and L. G. Paterno: Reduced Graphene Oxide Multilayers for Gas and Liquid Phases Chemical Sensing, RSC Adv., 4 (2014), 17917-17924.
    [21] J. G. Santos, J. R. Souza, C. J. Letti, M. A. G. Soler, P. C. Morais, M. A. Pereira-da-Silva and L. G. Paterno: Iron Oxide Nanostructured Electrodes for Detection of Copper(II) Ions, J. Nanosci. Nanotechnol., 14 (2014), 6614-6623.
    [22] J. Letti, K. A. G. Costa, M. A. Gross. L. G. Paterno, M. A. Pereira-da-Silva, P. C. Morais and M. A. G. Soler: Synthesis, Morphology and Electrochemical Applications of Iron Oxide Based Nanocomposites, Adv. Nano Res., 5 (2017), 15-30.
    [23] M. A. G. Soler and L. G. Paterno, Magnetic Nanoparticles. In: Nanostructures. Ed. O. N. Oliveira Jr, M. Ferreira, A. L. Da Róz and F. L. Leite. 2017, Elsevier. 147-186.
    [24] P. C. Morais, P.C, S. W. da Silva, M. A. G. Soler and N. Buske: Raman Investigation of Uncoated and Coated Magnetic Fluids, J. Phys. Chem. A, 104 (2000), 2894-2896.
    [25] M. A. G. Soler, E. C. D. Lima, S. W. Silva, T. F. O. Melo, A. C. M. Pimenta, J. P. Sinnecker, R. B. Azevedo, V. K. Garg, A. C. Oliveira, M. A. Novak and P. C. Morais: Aging Investigation of Cobalt Ferrite Nanoparticles in Low pH Magnetic Fluid, Langmuir, 23 (2007), 9611-9617.
    [26] M. A. G. Soler, E. C. D. Lima, E. S. Nunes, F. L. R. Silva, A. C. Oliveira, R. B. Azevedo and P. C. Morais: Spectroscopic Study of Maghemite Nanoparticles Surface-grafted with DMSA, J. Phys. Chem. A, 115 (2011), 1003-1008.
    [27] J. Philip and J. M. Laskar: Optical Properties and Applications of Ferrofluids—A Review, J. Nanofluids, 1 (2012), 3-20.
    [28] M. Magnani, L. Galluzzi and I. J. Bruce: The Use of Magnetic Nanoparticles in the Development of New Molecular Detection Systems, J. Nanosc. Nanotech., 6 (2006), 1-10.
    [29] R. Dalpozzo: Magnetic Nanoparticle Supports for Asymmetric Catalysts, Green Chem., 17 (2015), 3671-3686.
    [30] O. Marinică, D. Susan-Resiga, F. Bălănean, D. Vizman, V. Socoliuc and L. Vékás: Nano-microcomposite Magnetic Fluids: Magnetic and Magnetorheological Evaluation for Rotating Seal and Vibration Damper Applications, J. Magn. Magn. Mater., 406 (2016), 134-143.
    [31] Z. Sun, J. Du, L. Yan, S. Chen, Z. Yang and C. Jing: Multifunctional Fe3O4@SiO2−Au Satellite Structured SERS Probe for Charge Selective Detection of Food Dyes, ACS Appl. Mater. Interfaces, 8 (2016), 3056-3062.
    [32] W. R. Viali, G. B. Alcantara, P. P. C. Sartoratto, M. A. G. Soler, E. Mosiniewicz-Szablewska, B. Andrzejewski and P. C. Morais: Investigation of the Molecular Surface Coating on the Stability of Insulating Magnetic Oils, J. Phys. Chem. C, 114 (2010), 179-188.
    [33] Y. P. Chen, M. Zou, C. Qi, M.-X. Xie, D.-N. Wang, Y.-F. Wang, Y.-F., Xue, Q., Li, J.-F. and Y. Chen: Immunosensor Based on Magnetic Relaxation Switch and Biotin–Streptavidin System for the Detection of Kanamycin in Milk, Biosens. Bioelectron., 39 (2013), 112-117.
    [34] V. M. Aroutiounian, V. M. Arakelyan, G. E. Shahnazaryan, M. S. Aleksanyan, K. Hernadi, Z. Nemeth, Z., P. Berki, Z. Papa, Z. Toth and L. Forro: The Ethanol Sensors Made from α-Fe2O3 Decorated with Multiwall Carbon Nanotubes, Adv. Nano Res., 3 (2015), 1-11.
    [35] Y. Wang, H. Ma, X. Wang, X. Pang, D. Wu, B. Du and Q. Wei: Novel Signal Amplification Strategy for Ultrasensitive Sandwich-Type Electrochemical Immunosensor Employing Pd–Fe3O4-GS as the Matrix and SiO2 as the Label, Biosens. Bioelectron., 74 (2015), 59-65.
    [36] A. Zarrin, S. Sadighian, K. Rostamizadeh, O. Firuzi, M. Hamidi, S. Mohammadi-Samani and R. Miri: Design, Preparation, and in Vitro Characterization of a Trimodally-Targeted Nanomagnetic Onco-Theranostic System for Cancer Diagnosis and Therapy, Int. J. Pharm., 500 (2016), 62-76.
    [37] S. Begin-Colin and D. Felder-Flesch, Functionalizsation of Magnetic Iron Oxide Nanoparticles, in: N.T.K. Thank (Ed.) Magnetic Nanoparticles from Fabrication to Clinical Applications, CRC Press Taylor & Francis Group, Boca Raton, FL, 2012, pp. 151-191.
    [38] E. Blums, A. Cebers and M. M. Maiorov, Magnetic Fluids, 1985, Walter de Gruyter, Berlin.
    [39] M. A. G. Soler, L.G. Paterno, J. P. Sinnecker, J. G. Wen, E.H.C.P. Sinnecker, R. F. Neumann, M. Bahiana, N. Novak and P. C. Morais: Assembly of -Fe2O3/polyaniline Nanofilms with Tuned Dipolar Interaction, J. Nanopart. Res., 14 (2012), 653-10.
    [40] L. G. Paterno, M. A. G. Soler, F. J. Fonseca, J. P. Sinnecker, E. H. C. P. Sinnecker, E. C. D. Lima, M. A. Novak and P. C. Morais: Layer-by-Layer Assembly of Bifunctional Nanofilms: Surface-Functionalized Maghemite Hosted in Polyaniline, J. Phys. Chem. C, 113 (2009), 5087-5095.
    [41] Q. Xiang, C. B. Teixeira, L. Sun and P. C. Morais: Magnetic Nanoparticle Film Reconstruction Modulated by Immersion within DMSA Aqueous Solution, Sci. Rep., 6 (2016), 18202.
    [42] P. Pichon, P. Louet, O. Felix, M. Drillon, S. Begin-Colin and G. Decher: Magnetotunable Hybrid Films of Stratified Iron Oxide Nanoparticles Assembled by the Layer-by-Layer Technique, Chem. Mater., 23 (2011), 3668-3675.
    [43] G. B. Alcantara, L. G. Paterno, F. J. Fonseca, P. C. Morais and M. A. G. Soler: Morphology of Cobalt Ferrite Nanoparticle–Polyelectrolyte Multilayered Nanocomposites, J. Magn. Magn. Mater., 323 (2011), 1372-1377.
    [44] J. Letti, L. G. Paterno, M. A. Pereira-da-Silva, P. C. Morais and M. A. G. Soler: The Role of Polymer Films on The Oxidation of Magnetite Nanoparticles, J. Solid. State. Chem., 246 (2016), 57-64.
    [45] R. F. Neumann, M. Bahiana, L. G. Paterno, M. A. G. Soler, J. P. Sinnecker, J. G. Wen and P. C. Morais: Morphology and Magnetism of Multifunctional Nanostructured γ-Fe2O3 Films: Simulation and Experiments, J. Magn. Magn. Mater., 347 (2013), 26-32.
    [46] L. G. Paterno, G. B. Alcantara, F. J. Fonseca, M. A. G. Soler, J. P. Sinnecker, J.P., M. A. Novak, E. C. D. Lima and P. C. Morais: Fabrication and Characterization of Nanostructured Conducting Polymer Films Containing Magnetic Nanoparticles, Thin Solid Films, 517 (2009), 1753-1758.
    [47] L. G. Paterno, M. A. G. Soler, F. J. Fonseca, J. P. Sinnecker, E. H. C. P. Sinnecker, E. C. D. Lima, S. N. Bao, M. A. Novak, M.A. and P. C. Morais: Magnetic Nanocomposites Fabricated via the Layer-by-Layer Approach, J. Nanosci. Nanotech., 10 (2010), 2679-2685.
    [48] L. G. Paterno, E. H. C. P. Sinnecker, M. A. G. Soler, J. P. Sinnecker, M. A. Novak and P. C. Morais: Tuning of Magnetic Dipolar Interactions of Maghemite Nanoparticles Embedded in Polyelectrolyte Layer-By-Layer Films, J. Nanosci. Nanotechnol., 12 (2012), 6672-6678.
    [49] M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima and P. C. Morais: Surface passivation and characterization of cobalt–ferrite nanoparticles, Surf. Sci., 575, (2005), 12-16.
    [50] Barsoukov and J. R. Macdonald: in Impedance Spectroscopy: Theory, Experiment and Applications, 2005, VCH, New Jersey.
    [51] W.-S. Huang, B. D. Humphrey and A. G. MacDiarmid: Polyaniline, a Novel Conducting Polymer. Morphology and Chemistry of its Oxidation and Reduction in Aqueous Electrolytes, J. Chem. Soc. Faraday Trans., 1, 82 (1986), 2385-2400.

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Soler M. (2017). Layer-by-Layer Assembled Nanocomposite Films for Energy Systems. In Kongoli F, Marquis F, Chikhradze N (Eds.), Sustainable Industrial Processing Summit SIPS 2017 Volume 5. Marquis Intl. Symp. / New and Advanced Materials and Technologies (pp. 469-481). Montreal, Canada: FLOGEN Star Outreach