2017-Sustainable Industrial Processing Summit
SIPS 2017 Volume 5. Marquis Intl. Symp. / New and Advanced Materials and Technologies

Editors:Kongoli F, Marquis F, Chikhradze N
Publisher:Flogen Star OUTREACH
Publication Year:2017
Pages:590 pages
ISBN:978-1-987820-69-0
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2017_Volume1
CD shopping page

    Lightweight Ti,Nb-Al-C MAX Phases-based Materials: Preparation, Structure, and Properties

    Tetiana Prikhna1; Vladimir Sverdun1; Orest Ostash2; Andriy Ivasyshyn2; Myroslav Karpets1; Thierry Cabioc'h3; Lucyna Jaworska4; Patrick Chartier3; Viktor Moshchil1; Jolanta Cyboroń4; Tetiana Zimych1; Alexandra Starostina1; 0; Fernand Marquis5; Andrzej Kalinka6; Andrzej Kalinka6; Sergey Dub6; Anatoliy Kostornov6; 0; 0;
    1INSTITUTE FOR SUPERHARD MATERIALS OF THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE, Kiev, Ukraine; 2KARPENKO PHYSICAL-MECHANICAL INSTITUTE OF THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE, Lviv, Ukraine; 3UNIVERSITE DE POITIERS, CNRS/LABORATOIRE PHYMAT, Chasseneuil Futuroscope Cedex, France; 4THE INSTITUTE OF ADVANCED MANUFACTURING TECHNOLOGY, Krakow, Poland; 5SAN DIEGO STATE UNIVERSITY, DEPARTMENT OF MECHANICAL ENGINEERING, San Diego, United States; 6, , ;
    Type of Paper: Invited
    Id Paper: 323
    Topic: 43

    Abstract:

    This paper presents and discusses the interrelations between preparation, structure, and properties of Ti–Al–C MAX-phases-based materials of the 211 and 312 structural types, and materials based on (Ti, Nb)–Al–C solid solution of the 312 type. The materials were prepared in vacuum under 1.6×10-3 Pа, by pressureless synthesis in argon under 0.1 MPa, hot pressing under 30 MPa, and high temperature–high pressure sintering at 2 GPa. The materials structure was investigated using X-ray with Rietveld refinement, SEM and Auger spectroscopy. The physical and mechanical properties: hardness, fracture toughness, bending and compressive strength, Young modulus, logarithmic decrement of damping oscillations, friction coefficient, strength stability in hydrogen at 600 oC, long-term oxidation resistance in air at 600 oC, 1000 h, stability in radiation environment and electrical resistivity were measured. These properties make these materials very promising as interconnectionion material for hydrogen fuel cells, damping and current collector materials, polishing powders for jewelry stones, and many other applications.

    Keywords:

    New and advanced materials;

    References:

    [1] M. Barsoum. The Mn+1AXn: A new class of solids; thermodynamically stable nanolaminates, Prog Solid St Chem 28 (2000), 201-281.
    [2] M.Barsoum, D.Brodkin, T. El-Raghy, T. Layered. Machinable ceramics for high temperature applications, Scrip Met et Mater, 36, (1997), 535-576.
    [3] T. El-Raghy, A. Zavaliangos, M. Barsoum, S. Kalidindi. Damage mechanisms around hardness indentations in Ti3SiC2, J Am Ceram Soc, 80(2), (1997), 513-519.
    [4] B. Kooi, R. Poppen, N,.Carvalho. J. de Hosson,. M. Barsoum. Ti3SiC2: A damage tolerant ceramic studied with nanoindentations and transmission electron microscopy, Acta Materialia, 51 (2003), 2859-2931.
    [5] J. Molina-Aldareguia, J. Emmerlich, J-P. Palmquist, U. Jansson, L. Hultman. Kink formation around indents in laminated Ti3SiC2 thin films studied in the nanoscale, Scripta Materialia, 49 (2003), 155-215.
    [6] T. Prikhna, S. Dub, A. Starostina, M. Karpets, T. Cabiosh, P. Chartier. Mechanical properties of materials based on MAX phases of the Ti-Al-C system, J of Superhard Materials, 34(2) (2012), 102-111.
    [7] X. Wang, Y. Zhou. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review, J Mater Sci Technol 26(5) (2010), 385-416.
    [8] Z. Sun. Progress in research and development on MAX phases: a family of layered ternary compounds, International Mat Rev, 56(3) (2011), 143-209.
    [9] K. Whittle, M. Blackford, R. Aughterson et al., Radiation tolerance of Mn+1AXn phases, Ti3AlC2 and Ti3SiC2, Acta Materialia, 58(13) (2010), 4362-4370.
    [10] X. Wang, Y. Zhou. Oxidation behavior of Ti3AlC2 at 1000-1400 °C in air, Corros Sci, 45(5) (2003), 891-907.
    [11] G. Song, W. Sloof, S. Li, S. Van der Zwaag, Crack healing of advanced machinable high temperature Ti3AlC2 ceramics, Proceedings of Тhe First International Conference on Self Healing Materials, 2007, 96.
    [12] T. Prikhna, T. Cabioc’h, W. Gawalek, O. Ostash, D. Lizkendorf, S. Dub, M. Loshak, V. Sverdun, P. Chartier, T. Basyuk, V. Moshchil, A. Kozyrev, M. Karpets, V. Kovylaev, A. Starostina, D. Turkevich. Study of the thermal stability and mechanical characteristics of MAX phases of Ti-Al-C(N) system and their solid solutions, Advances in Science and Technology, 89 (2014), 123-131.
    [13] T. Prikhna, O. Ostash, T. Basyuk, A. Ivasyshyn, V. Sverdun, M. Loshak, S. Dub, V. Podgurska, V. Moshchil, T. Cabioc’h, P. Chartier, M. Karpets, V. Kovylaev, O. Starostina, A. Kozyrev. Thermal stability and mechanical characteristics of densified Ti3AlC2-based material, Solid State Phenomena, 230 (2015), 140-143.
    [14] T. Prikhna, A. Starostina, I. Petrusha, S. Ivakhnenko, A. Borimskii, Yu. Filatov, M. Loshak, M. Serga, V. Tkach, V. Turkevich, V. Sverdun, S. Klimenko, D. Turkevich, S. Dub, T. Basyuk, M. Karpets, V. Moshchil’, A. Kozyrev, G. Il’nitskaya, V. Kovylyaev, D. Lizkendorf, T. Cabioc’h, P. Chartier. Studies of the oxidation stability, mechanical characteristics of materials based on MAX phases of the Ti-Al-(C, N) systems, and of the possibility of their use as tool bonds and materials for polishing, Journal of Superhard Materials, 36 (1) (2014), 9-17.
    [15] T. Cabioch, P. Eklund, V. Mauchamp, M. Jaouen, M. Barsoum. Tailoring of the thermal expansion of MAX Phases in the Cr2(Al1-x,Gex)C system, J of the Europ Ceram Soc, 33(8) (2013), 397-404.
    [16] T. Cabioc’h, P. Eklunda, V. Mauchamp, M. Jaouen. Structural investigation of substoichiometry and solid solution effects in Ti2Al(Cx,N1−x)y compounds, J. Europ Ceram Soc, 32 (2012), 1803-1814.
    [17] M. Zhuo, Y. Zhou, M. Li, J. Wang. Microstructural characterization of layered ternary Ti2AlC, Acta Materialia, 54(4) (2006), 1009-1014.
    [18] Z. Gе, K. Chen, J. Guo, H. Zhou, J. Ferreira. Combustion synthesis of ternary carbide Ti3AlC2 in Ti-Al-C system, J of the Europ Ceram Soc, 23 (2003), 567-574.
    [19] N. Tzenov, M. Barsoum. Synthesis and characterization of Ti3AlC2, J Am Ceram Soc, 83 (2000), 825-856.
    [20] X. Wang, Y. Zhou. Microstructure and properties of Ti3AlC2 prepared by the solid–liquid reaction synthesis and simultaneous in-situ hot pressing process, Acta Mater, 50 (2002), 3141-3150.
    [21] A. Zhou, C. Wang, Y. Huang. A possible mechanism on synthesis of Ti3AlC2, Mater Sci Eng A352 (2003), 333-342.
    [22] Z. Ge, K. Chen, J. Guo, H. Zhou. Combustion synthesis of ternary carbide Ti3AlC2 in Ti-Al-C system, J Eur Ceram Soc, 23 (2003), 567-574.
    [23] M. Lopacinski, J. Puszynski, J. Lis. Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique, J Am Ceram Soc, 84 (2001), 3051-3054.
    [24] S-B. Li, H-Xi. Zhai, G-P. Bei, Ya. Zhou, Zh-L. Zhang. Synthesis and microstructure of Ti3AlC2 by mechanically activated sintering of elemental powders, Ceram International 33 (2007), 169-242.
    [25] L. Zheng, J. Li, M. Li, Y. Zhou. Investigation on the properties of Nb and Al doped Ti3SiC2 as a new interconnection material for IT-SOFC, Int. J. Hydrogen Energy, 37 (2012), 1084-1092.
    [26] R. Wojtowicz, E. Golovko. High temperature oxidation of titanium and its alloys, Science. Dumka, Kiev, 1984 (in Russian).
    [27] H. Jiang, M. Hirohasi, Y. Lu, H. Imanari. Effect of Nb on the high temperature oxidation of Ti (0-50 at.%)Al, Scripta Mater, 46 (2002), 639-682.
    [28] L. Devin, A. Osadchy, A. Sulima. Influence of damping elements on the resistance of the incisors of polycrystalline superhard materials when turning hardened steels, Proceedings of Rock Cutting and Metalworking Tools – Equipment and Technology of Its Manufacture and Use, 12 (2009), 519-524 (in Russian).
    [29] A. Ivasyshyn, O. Ostash, T. Prikhna, V. Podgurs`ka, T. Basyuk. Influence of technological media on the mechanical and physical properties of the materials for fuel cells, Materials Science, 51(2) (2015), 149-157.
    [30] N. Magdefrau. Evaluation of solid oxide fuel cell interconnection coatings: reaction layer microstructure, chemistry and formation mechanisms. Doctoral dissertation. – University of Connecticut, Mansfield, USA 2013.
    [31] R. Lobnig, H. Schmidt, K. Hennesen, H. Grabke. Diffusion of cations in chromia layers grown on iron-base alloys, Oxidation of Metal, 37(1/2) (1992), 81-93.
    [32] M.G Loshak. Strength and durability of hard alloys, Naukova dumka, Kiev, 1984, 328.
    [33] A. Mockuté, M. Dahlqvist, L. Hultman, P. O. A Persson, J. Rosén. Oxygen incorporation in Ti2AlC thin films studied by electron energy loss spectroscopy and ab initio calculations, Journal of Materials Science, 48(10) (2013), 3686-3691.

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Prikhna T, Sverdun V, Ostash O, Ivasyshyn A, Karpets M, Cabioc'h T, Jaworska L, Chartier P, Moshchil V, Cyboroń J, Zimych T, Starostina A, Basyuk T, Marquis F, Kalinka A, Kalinka A, Dub S, Kostornov A, Varchenko V, . (2017). Lightweight Ti,Nb-Al-C MAX Phases-based Materials: Preparation, Structure, and Properties. In Kongoli F, Marquis F, Chikhradze N (Eds.), Sustainable Industrial Processing Summit SIPS 2017 Volume 5. Marquis Intl. Symp. / New and Advanced Materials and Technologies (pp. 367-386). Montreal, Canada: FLOGEN Star Outreach