Editors: | Kongoli F, Fehrmann R, Gadzuric S, Gong W, Seddon KR, Malyshev V, Iwata S |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2017 |
Pages: | 151 pages |
ISBN: | 978-1-987820-65-2 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Mesoporous substances are used as catalysts, adsorbents, sensors, materials for optics, electronics and medicine. They are highly structured to 3-10 nm diameter pore level, which suggests wide horizons of the use of metal nano foams and composites based on them. Vast field of research in this area includes variation of the composition, thickness of the oxide layer, control and management functionality and geometry of the pores.
Our aims are to understand the processes, which occur in the selective dissolution in a molten salt electrolyte, and preparation of a porous material. Copper alloys having higher electrical and thermal conductivity to more active ingredients such as zinc and aluminum, are promising targets for the study of the synthesis and selective dissolution with developed surface structures and metallic conductivity. Use of molten salts as an electrolyte in the selective anodic dissolution of metallic materials will prevent application of aqueous solutions and will significantly intensify the dissolution process due to the high temperature.
We have obtained new experimental data on the anode selective dissolution of copper alloys with zinc and nickel in molten alkali halides at different temperatures. Gravimetry, open circuit potential methods and CVA were performed. The structure of alloys was analyzed by SEM and BET methods.