2017-Sustainable Industrial Processing Summit
SIPS 2017 Volume 3. Gaune-Escard Intl. Symp. / Molten Salt and Ionic Liquid

Editors:Kongoli F, Fehrmann R, Gadzuric S, Gong W, Seddon KR, Malyshev V, Iwata S
Publisher:Flogen Star OUTREACH
Publication Year:2017
Pages:151 pages
ISBN:978-1-987820-65-2
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2017_Volume1
CD shopping page

    Conductivity Evaluation of (LiCl-KCl)eut. Based Molten Mixtures Containing Rare Earth and Uranium Chlorides

    Alexei Potapov1; Alexander Salyulev1;
    1INSTITUTE OF HIGH TEMPERATURE ELECTROCHEMISTRY, Ekaterinburg, Russian Federation;
    Type of Paper: Regular
    Id Paper: 43
    Topic: 13

    Abstract:

    At the nitride spent nuclear fuel (SNF) pyrochemical reprocessing, the SNF components are transferred into the molten LiCl - KCl eutectic and then the components of the mixture are electrochemically separated.The aim of this work is to develop the method to estimate the electrical conductivity of the LiCl-KCl based melts containing rare earth and uranium chlorides. The electrical conductivity is a non-additive property; therefore a simple summation of the conductivities gives a significantly overvalued result. For example, deviations of the electrical conductivity of the molten (LiCl-KCl)eut. + NdCl3 mixture from the additive values increase and reach ~ 80 - 90% as the NdCl3 concentration increases.
    The stronger interaction in the system results in the greater deviation of its properties from the additivity. Systems composed of (LiCl-KCl)eut. and CeCl3, NdCl3, etc., are systems with strong interaction. However, if we for summation to consider binary systems such as ((LiCl-KCl)eut. + CeCl3), ((LiCl-KCl)eut. + NdCl3), ((LiCl-KCl)eut. + UCl3), then their mixtures will form a systems with a weak interaction and the additive conductivity will differ slightly from the real value. For example, to estimate the electrical conductivity of the (LiCl-KCl)eut. - 1.51%CeCl3 +
    + 2.31%NdCl3 + 2.31mol.% UCl3 system, we used data on conductivity of the ((LiCl-KCl)eut. - CeCl3), ((LiCl-KCl)eut. - NdCl3) and ((LiCl-KCl)eut. - UCl3) systems, on which we have reliable experimental data. In this case the additive conductivity, calculated by the above mentioned technique coincides with the experimentally obtained values, within experimental error (�1.5%).
    In the present work different approaches to calculate the electrical conductivity of complex mixtures are considered.

    Keywords:

    Chloride; Conductivity; Electrochemical; Mixtures; Moltensalt; Neodymium; Potassium; Uranium;

    Cite this article as:

    Potapov A and Salyulev A. (2017). Conductivity Evaluation of (LiCl-KCl)eut. Based Molten Mixtures Containing Rare Earth and Uranium Chlorides. In Kongoli F, Fehrmann R, Gadzuric S, Gong W, Seddon KR, Malyshev V, Iwata S (Eds.), Sustainable Industrial Processing Summit SIPS 2017 Volume 3. Gaune-Escard Intl. Symp. / Molten Salt and Ionic Liquid (pp. 132-133). Montreal, Canada: FLOGEN Star Outreach