2017-Sustainable Industrial Processing Summit
SIPS 2017 Volume 3. Gaune-Escard Intl. Symp. / Molten Salt and Ionic Liquid

Editors:Kongoli F, Fehrmann R, Gadzuric S, Gong W, Seddon KR, Malyshev V, Iwata S
Publisher:Flogen Star OUTREACH
Publication Year:2017
Pages:151 pages
ISBN:978-1-987820-65-2
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2017_Volume1
CD shopping page

    The prespect of Al production with Inert Anode

    Yihan Liu1;
    1NORTHEASTERN UNIVERSITY, Shenyang City, China;
    Type of Paper: Regular
    Id Paper: 108
    Topic: 13

    Abstract:

    At present, the Hall-H��orult process is still extensively used in aluminium electrolysis, there are many problems in carbon anode, such as serious environmental pollution, high-quality carbon consumption and so on. Developing a new type inert anode to replace traditional carbon anode is an effective way to solve these problems. In view of its properties: excellent chemical stability, good corrosion resistance in Na3AlF6-Al2O3 molten salt, small swell-coefficient at high temperature and so on, NiFe2O4 based cermet is one of the most promising industrial inert anode materials, which have been researched widely by scholars all over the world.
    As for ceramic materials, the NiFe2O4, which possesses the structure of AB2O4 is the idealization inert anode ceramic matrix material could be widely used in Al electrolysis industry because it's good corrosion resistance and excellent stability in thermal and chemical composition. However, due to its bad conductivity, the NiFe2O4 can not satisfy the requirement that is the inert anode material must have enough good electrical conductivity. In order to overcome this defect, it is necessary to add some metal component which having good conductivity into the NiFe2O4 to fabricate the cermet material as an inert anode.

    Keywords:

    Electro Winning of Aluminium ; Molten Salt Chemistry and Thermodynamics;

    Cite this article as:

    Liu Y. (2017). The prespect of Al production with Inert Anode. In Kongoli F, Fehrmann R, Gadzuric S, Gong W, Seddon KR, Malyshev V, Iwata S (Eds.), Sustainable Industrial Processing Summit SIPS 2017 Volume 3. Gaune-Escard Intl. Symp. / Molten Salt and Ionic Liquid (pp. 89-90). Montreal, Canada: FLOGEN Star Outreach