Recovery of Rare Earth Elements by Co-precipitation with Iron, Aluminum and Manganese (Hydr)oxides from Acid Mine Drainage
Mateus Lanna Borges de
Moraes1; ana flavia
marinho saraiva2; Ana Claudia
Ladeira2;
1COMISSION NACIONAL DE ENERGIA NUCLEAR, Belo Horizonte, Brazil; 2CENTRO DE DESENVOLVIMENTO DA TECNOLOGIA NUCLEAR, Belo Horizonte, Brazil;
Type of Paper: Regular
Id Paper: 302
Topic: 6Abstract:
In the actual global chain of high-tech products, such as smartphones or communication satellites, specific wavelength lasers, catalyzers, etc., rare earth elements (REE) are important raw materials. In 2015, the global estimated production was 124 kt, and China alone produced 105 kt. Although the production and demand for REE are well established, there is a worldwide effort to find new resources and technologies due to the high demand foreseen for these elements in the near future. Acid Mine Drainage (AMD) can be a secondary resource of REE, since it is a natural and continuous leaching process of rocks or waste piles. For example, in The Osamu Utsumi mine (Minas Gerais-Brazil) the AMD waters contain around 130 mg L-1 of total REE - the light ones being the majority. Considering a flow rate of 150 to 300 m3 h-1, it is expected to recover up to 468 to 936 kg of REE per day, what is quite considerable. In AMD waters, iron and manganese (hydr)oxides are ubiquitous minerals and their importance on the retention and transportation of U, REE and other metals is well known. Previous studies showed that some REE can be immobilized by iron (hydr)oxides in acid solutions, with posterior selective extraction. This study aims at concentrating the REE present in AMD waters by co-precipitating it with synthetic Fe, Al and Mn (hydr)oxides. AMD was simulated using a laboratory solution with pH = 2.6, sulfate content of 2 g L-1 and total REE content of ~130 mg L-1. Different amounts of FeCl3, Al2(SO4)3 and MnSO4 0.5 mol L-1 were added to the laboratory solution in order to reach distinct Fe:Al:Mn:REE molar ratios. The pH was adjusted to 6±0.3 using KOH 2 mol L-1. Results showed that for some experimental conditions, the effectiveness of the removal of REE were above than 90 %. It was obtained an amorphous solid phase with ~17% of REE oxides using a molar ratio of 16:0:4:1, with 98% of removal effectiveness. Further studies will focus on the increase of REE content in the solid phase, followed by the leaching of these elements with acid and saline solutions, aiming to obtain a REE concentrate.
Keywords:
Environment; Hydrometallurgy; RareEarth; Recovery; Yttrium;
References:
[1] U.S. Geological Survey. Mineral Commodities Summaries. Miner. Commod. Summ. 202 (2016). doi:10.3133/70140094.
[2] Stewart, B. W., Capo, R. C., Hedin, B. C. & Hedin, R. S. Rare earth element resources in coal mine drainage and treatment precipitates in the Appalachian Basin, USA. Int. J. Coal Geol. (2017) 169, 28–39.
[3] Lapido-Loureiro, F. E. & Santos, R. L. C. O Brasil e a reglobalização da indústria das terras raras. CETEM/MCTI 1, (2013).
[4] Skousen, J. G., Sexstone, A. & Ziemkiewicz, P. F. Acid Mine Drainage Control and Treatment. (2000) 1–42.
[5] Nordstrom, D. K., Bowell, R. J., Campbell, K. M. & Alpers, C. N. Challenges in Recovering Resources from Acid Mine Drainage. in Mine Water & Circular Economy (Vol II). (eds. Wolkersdorfer, C., Sartz, L., Sillanpää, M. & Häkkinen, A.) (2017) 1138–1146.
[6] Lee, G., Bigham, J. M. & Faure, G. Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl. Geochemistry (2002) 17, 569–581.
[7] Sheoran, A. S. & Sheoran, V. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Miner. Eng. (2006) 19, 105–116.
[8] Johnson, D. B. & Hallberg, K. B. Acid mine drainage remediation options: A review. Sci. Total Environ. (2005) 338, 3–14.
[9] Freitas, E. T. F. et al. Arsenic entrapment by nanocrystals of Al-magnetite: The role of Al in crystal growth and As retention. Chemosphere (2016) 158, 91–99.
[10] Pg, C. A. F. et al. Arsênio , Urânio , Tório e Elementos Terras Raras ( ETR ) em Águas de Fontes e de Bicas de Cidades do Quadrilátero Ferrífero , MG (2008).
[11] Gomes, Adba Florência da Silva; Ladeira, A. C. Q. Caracterização de Lamas contendo urânio como subsídio par Ações Futuras de Mitigação. Metal. e Mater. (2011) 64, 487–492.
[12] Ladeira, A. C. Q., Goncalves, J. S. & Morais, C. A. Treatment of effluents from uranium oxide production. Environ. Technol. (2011) 32, 127–131.
[13] Miekeley, N., Coutinho de Jesus, H., Porto da Silveira, C. L., Linsalata, B. P. & Morse, B. R. Rare-earth elements in groundwaters from the Osamu Utsumi mine and Morro do Ferro analogue study sites, Pocos de caldas, Brazil. J. Geochemical Explor. (1992) 45, 365–387.
[14] Read, D. Geochemical modelling of uranium redistribution in the Osamu Utsumi mine, Poços de Caldas. J. Geochemical Explor. (1992) 45, 503–520.
[15] Lichtner, P. C. & Waber, N. Redox front geochemistry and weathering: theory with application to the Osamu Utsumi uranium mine, Poços de Caldas, Brazil. J. Geochemical Explor. (1992) 45, 521–564.
[16] Miekeley, N., Linsalata, P. & Osmond, J. K. Uranium and thorium isotopes in groundwaters from the Osamu Utsumi mine and Morro do Ferro natural analogue sites, Poços de Caldas, Brazil. J. Geochemical Explor. (1992) 45, 345–363.
[17] Ayora, C., Macías, F., Torres, E. & Nieto, J. M. Rare Earth Elements in Acid Mine Drainage. in XXXV Reunión de la Sociedad Española de Mineralogía (2015) 1–22.
[18] Fonseca, V. Mais energia, menos impacto para o ambiente. Publicação trimestral da Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG, N°39 - Set-Nov 62 (2009).
[19] Ziemkiewicz, P. & Water, W. V. Recovery of Rare Earth Elements ( REEs ) from Coal Mine Drainage. (2013).
[20] Vierheilig, A. A. Methods of Recovering Rare Earth Elements. (2012)1, 1–25.
[21] Moldoveanu, G. A. & Papangelakis, V. G. Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate. Hydrometallurgy (2013) 131–132, 158–166.
[22] De Almeida Silva, R., Castro, C. D., Petter, C. O. & Schneider, I. A. H. Production of Iron Pigments (Goethite and Haematite) from Acid Mine Drainage. Mine Water - Manag. Challenges (2011) 469–474.
[23] Pietralonga, A. G. Imobilização de lantânio por coloides sintéticos de ferro e alumínio. Dissertação de Mestrado. UFV-Viçosa-MG (2013).
[24] Prudêncio, M. I., Valente, T., Marques, R., Braga, M. A. S. & Pamplona, J. Rare Earth Elements, Iron and Manganese in Ochre-precipitates and Wetland Soils of a Passive Treatment System for Acid Mine Drainage. Procedia Earth Planet. Sci. (2017) 17, 932–935.
[25] Bau, M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta (1999) 63, 67–77.
[26] Cornell, R. M. & Schwertmann, U. Introduction to the Iron Oxides. The Iron Oxides (WILEY-VCH, 2003). doi:10.1002/3527602097.ch1
[27] Schwertmann, U. & Cornell, R. M. Iron Oxides in the Laboratory - Preparation and Characterization. Wiley-VCH (2000). doi:10.1180/minmag.1992.056.383.20
[28] Freitas, R. M. et al. Oxidative Precipitation of Manganese from Acid Mine Drainage by Potassium Permanganate. J. Chem. 2013, 1–8 (2013).
[29] COPAM-CERH. Deliberação Normativa Conjunta COPAM/CERH-MG no 01, de 05 de maio de 2008. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. 1–36 Available at: http://www.siam.mg.gov.br/sla/download.pdf?idNorma=8151. (Accessed: 8th July 2017)
[30] Yoshida, Y. & Guido, L. Mössbauer Spectroscopy. (Springer-Verlag, 2013). doi:10.1007/978-3-642-32220-4
[31] Virender K. Sharma, P. D., Klingelhöfer, G. & Nishida, T. Mössbauer spectroscopy : applications in chemistry, biology, industry, and nanotechnology. (John Wiley & Sons, Inc., 2013).
[32] Michel, F. M. et al. The structure of ferrihydrite, a nanocrystalline material. Science (2007) 316, 1726–1729.
[33] Huang, C. Rare Earth Coordination Chemistry: fundamentals and applications. (2010). doi:10.1016/bs.hpcre.2016.03.004
[34] Lange, N. Handbook of Chemistry. Soil Science (1999). doi:10.1080/10426919008953291
[35] Oelkers, E. H., Bénézeth, P. & Pokrovski, G. S. Thermodynamic Databases for Water-Rock Interaction. Rev. Mineral. Geochemistry (2009) 70, 1–46.
[36] Parkhurst, D. L. & Appelo, C. A. J. Description of Input and Examples for PHREEQC Version 3 — A Computer Program for Speciation , Batch-Reaction , One-Dimensional Transport , and Inverse Geochemical Calculations Chapter 43 of. (2013).
[37] Kinniburgh, D. G. & Cooper, D. M. PhreePlot - Creating graphical output with PHREEQC. (2016).
[38] Zhu, M. et al. Structure of Sulfate Adsorption Complexes on Ferrihydrite. Environ. Sci. Technol. Lett. (2013) 1, 97–101.
[39] Parfitt, R. L. & Smart, R. S. C. The mechanism of sulfate adsorption on iron oxides. Soil Sci. Soc. Am. J. (1978) 42, 48–50.Full Text:
Click here to access the Full TextCite this article as:
Moraes M, marinho saraiva a, Ladeira A. (2017).
Recovery of Rare Earth Elements by Co-precipitation with Iron, Aluminum and Manganese (Hydr)oxides from Acid Mine Drainage.
In Kongoli F, Palacios M, Buenger T, Meza JH, Delgado E, Joudrie MC, Gonzales T, Treand N
(Eds.), Sustainable Industrial Processing Summit
SIPS 2017 Volume 1. Barrios Intl. Symp. / Non-ferrous Smelting & Hydro/Electrochemical Processing
(pp. 208-220).
Montreal, Canada: FLOGEN Star Outreach