Computational Thermodynamics Modeling of Oxygen Bottom Blown Copper Smelting Process
Qinmeng
Wang1; Xueyi
Guo1;
1CENTRAL SOUTH UNIVERSITY, Changsha, China;
Type of Paper: Keynote
Id Paper: 207
Topic: 6Abstract:
The oxygen bottom blown copper smelting process is a new technology which has been widely applied to the copper production in China. In this work, a computational thermodynamics model for this technology has been established, based on smelting mechanism and theory of Gibbs free energy minimization. The calculated results from the model agree well with the actual industrial data, indicating that the model can be used for the predictions under different operating conditions. The tendencies of the key parameters (such as Cu losses and Fe3O4 content in slag) and the distribution ratios of the minor elements (such as Pb, Zn, As, Sb and Bi) can be predicted by adjusting the oxygen/ore ratio charged into the bottom blown copper smelting furnace. The model can be used to monitor and optimize the industrial operations of the oxygen bottom blown copper smelting process.
Keywords:
Copper; Furnace; Oxygen; Smelting; Thermodynamics;
References:
[1] S. Wang, Y. Zhang, W. Davenport, A. Siegmund, S. Yao, T. Gonzales, G. Walters, and D. George: Copper 2016: Copper International Conference. 2016, pp. 322–29.
[2] X. Guo, Y. Zhang, Q. Wang, and Z. Yuan: Copper 2016: Copper International Conference. 2016, pp. 330–48.
[3] S. Liang: Copper 2016: Copper International Conference. 2016, pp. 1008–14.
[4] J. Yan: Copper 2016: Copper International Conference. 2016, pp. 1015–30.
[5] Z. Cui, Z. Wang, H. Wang, and C. Wei: Copper 2016: Copper International Conference. 2016, pp. 1043–52.
[6] X. Guo, Q. Wang, L. Liao, Q. Tian, and Y. Zhang: Nonferrous Met. Sci. Eng., 2014, vol. 5(5), pp. 28-34.
[7] M. Chen, Z. Cui, and B. Zhao: 6th International Symposium on High-Temperature Metallurgical Processing, Wiley. 2015, pp. 257–264.
[8] L. Shui, Z. Cui, X. Ma, M. A. Rhamdhani, A. V. Nguyen, and B. Zhao: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1218-25.
[9] L. Shui, Z. Cui, X. Ma, M. A. Rhamdhani, A. V. Nguyen, and B. Zhao: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 135-44.
[10] H. Liu, Z. Cui, M. Chen, and B. Zhao: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 164-77.
[11] H. Liu, Z. Cui, M. Chen, and B. Zhao: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1113-23.
[12] Z. Zhang, Z. Chen, H. Yan, F. Liu, L. Liu, Z. Cui, and D. Shen: Chin. J. Nonferrous Met., 2012, vol. 22, pp. 1826-34.
[13] Z. Zhang, H. Yan, F. Liu, and J. Wang: Chin. J. Nonferrous Met., 2013, vol. 23, pp. 1471-78.
[14] H. Yan, F. Liu, Z. Zhang, Q. Gao, L. Liu, Z. Cui, and D. Shen: Chin. J. Nonferrous Met., 2012, vol. 22, pp. 2393-400.
[15] L. Liao, X. Guo, Q. Wang, Q. Tian, and Y. Zhang: Nonferrous Met. Sci. Eng., 2014, vol. 5(5), pp. 49-55.
[16] X. Guo, Q. Wang, Q. Tian, and Y. Zhang: Chin. J. Nonferrous Met., 2015, vol. 25, pp. 1072-79.
[17] Q. Wang, X. Guo, Q. Tian, L. Liao, and Y. Zhang: Chin. J. Nonferrous Met., 2015, vol. 25, pp. 1678-1686.
[18] Q. Wang, X. Guo, L. Liao, Q. Tian, and Y. Zhang: Chin. J. Nonferrous Met., 2016, vol. 26, pp. 188-96.
[19] X. Guo, Q. Wang, Q. Tian, and B. Zhao: Chin. J. Nonferrous Met., 2016, vol. 26, pp. 689-698.
[20] L. Liao: Development and Application of Simulation Platform in the Oxygen Bottom Blowing Copper Smelting Process, Central South University, Changsha, 2016.
[21] D.R. Lide: CRC handbook of chemistry and physics, 85th ed., CRC press Inc., Boca Raton, 2004.
[22] A. Néron, G. Lantagne and B. Marcos: Chem. Eng. Sci., 2012, vol.82, pp.260-71.
[23] C. Rossi, L. Cardozo-Filho and R. Guirardello: Fluid. Phase. Equilibr, 2009, vol.278, pp.117-28.
[24] W. Wu: Mathematical Model Research and System Development of Multiphase Equilibrium in Copper Flash Smelting, Jiangxi University of Science and Technology, Ganzhou, 2007.
[25] R. Shimpo, Y. Watanabe, S. Goto, and O. Ogawa: Advances in Sulfide Smelting, TMS-AIME, Warrendale, PA, 1983, vol. 1, pp. 295–316.
[26] P. Tan, and C. Zhang: J. Cent. South U. T., 1997, vol. 4(1), pp. 36-41.
[27] K. W. Seo, and H. Y. Sohn: Metall. Trans. B, 1991, vol. 22(6), pp. 791-99.
[28] Y. Takeda, S. Ishiwata, and A. Yazawa: Trans. Jpn Inst. Met., 1983, vol. 24(7), pp. 518-28.
[29] P. C. Chaubal, H. Y. Sohn, D. B. George, and L. K. Bailey: Metall. Trans. B, 1989, vol. 20(1), pp. 39-51.
[30] M. Nagamori, and P. J. Mackey: Metall. Trans. B, 1978, vol. 9(1), pp. 255-65.
[31] A. Yazawa, S. Nakazawa, and Y. Takeda: Advances in Sulfide Smelting, TMS-AIME, Warrendale, PA, 1983, vol. 1, pp. 99–117.
[32] R. Shimpo, S. Goto, O. Ogawa, and I. Asakura: Can. Metall Q., 1986, vol. 25(2), pp. 113-21.
[33] M. Nagamori, W. J. Errington, P. J. Mackey and D. Poggi: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 839-53.
[34] C. Wang, and C. Zhang: World Nonferrous Met., 2016, (9), pp. 21-22.
[35] M.E. Schlesinger, M.J. King, K.C. Sole, and W.G.I. Davenport: Extractive Metallurgy of Copper, Elsevier, Oxford, 2011.
[36] S. Qu, Z. Dong, and T. Chen: China Nonferrous Metall., 2016, (3), pp. 22-24.Full Text:
Click here to access the Full TextCite this article as:
Wang Q, Guo X. (2017).
Computational Thermodynamics Modeling of Oxygen Bottom Blown Copper Smelting Process.
In Kongoli F, Palacios M, Buenger T, Meza JH, Delgado E, Joudrie MC, Gonzales T, Treand N
(Eds.), Sustainable Industrial Processing Summit
SIPS 2017 Volume 1. Barrios Intl. Symp. / Non-ferrous Smelting & Hydro/Electrochemical Processing
(pp. 221-234).
Montreal, Canada: FLOGEN Star Outreach