2016-Sustainable Industrial Processing Summit
SIPS 2016 Volume 7: Yang Intl. Symp. / Multiscale Material Mechanics

Editors:Kongoli F, Aifantis E, Wang H, Zhu T
Publisher:Flogen Star OUTREACH
Publication Year:2016
Pages:190 pages
ISBN:978-1-987820-48-5
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2016_Volume1
CD shopping page

    Biochemomechanical Poroelastic Theory of Tumor Growth

    Xi-Qiao Feng1;
    1TSINGHUA UNIVERSITY, Beijing, China;
    Type of Paper: Regular
    Id Paper: 471
    Topic: 1

    Abstract:

    Tumor growth is a complicated process involving genetic mutation, biochemical regulation, and mechanical deformation. In this paper, a thermodynamics-based nonlinear poroelastic model is established to interrogate the coupling among the mechanical, chemical, and biological mechanisms underpinning the growth of avascular tumors. A volumetric growth law accounting for mechano-chemo-biological coupling is proposed to describe the development of solid tumors. The regulating roles of stresses and nutrient transport in the growth of tumor spheroids are revealed under different surrounding environments. We show that the mechano-chemo-biological coupling triggers anisotropic and heterogeneous growth, responsible for the formation of layered structures in growing tumors. There exists a steady state, in which tumor growth is balanced by resorption. A phase diagram is constructed to illustrate how the elastic modulus and thickness of the confinements jointly dictate the volume of tumors at the steady state. The results are in consistency with relevant experimental results.

    Keywords:

    Deformation; Thermodynamics;

    Cite this article as:

    Feng X. Biochemomechanical Poroelastic Theory of Tumor Growth. In: Kongoli F, Aifantis E, Wang H, Zhu T, editors. Sustainable Industrial Processing Summit SIPS 2016 Volume 7: Yang Intl. Symp. / Multiscale Material Mechanics. Volume 7. Montreal(Canada): FLOGEN Star Outreach. 2016. p. 83-84.