Editors: | Kongoli F, Aifantis E, Wang H, Zhu T |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2016 |
Pages: | 190 pages |
ISBN: | 978-1-987820-48-5 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
The electrocaloric effect of ferroelectric materials, which occurs significantly near the first-order paraelectric/ferroelectric transition Curie temperature, has a tremendous prospect in solid-state cooling devices. In the present work, thermodynamics analysis and phase field simulations were conducted to demonstrate the mechanical compression-induced two types of pseudo-first-order phase transition, which could occur at a temperature below the Curie temperature. Thus, in one material there may coexist ultrahigh positive and negative electrocaloric effects, which are associated with the two pseudo-first-order phase transitions and tunable by the magnitude of the compression. The mechanical compression-induced pseudo-first-order phase transition and the coexistence of positive and negative electrocaloric effects establish a novel technology to design and manufacture next generation of solid-state cooling devices.