Editors: | Kongoli F, Aifantis E, Wang H, Zhu T |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2016 |
Pages: | 190 pages |
ISBN: | 978-1-987820-48-5 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
The eukaryotic genome is stored as a protein–DNA complex, the nucleosome, which is composed of H3, H4, H2A, and H4 histone proteins. The histone tails, variants of histones, the post-translational modifications on histone tails, and other DNA binding proteins have been shown to regulate nucleosome dynamics, which plays a critical role in gene expression. However, the regulation mechanism is still unclear on a molecular level. Here we present through computational studies on a single nucleosome particle and the particle with certain histone tail truncated. Our simulation unraveled the distinct function of H2A and H3 tails in stabilizing the nucleosome in the closed conformation: the H2A C-terminal tail switches linker DNA opening and closing simply by binding to DNA at different locations, whereas the H3 N-terminal tail regulates linker DNA by binding with a different pattern. Finally, we propose a model illustrating the mechanism by which H3 N-terminal and H2A C-terminal tails regulate nucleosome stability and dynamics.