2016-Sustainable Industrial Processing Summit
SIPS 2016 Volume 6: Yagi Intl. Symp. / Metals & Alloys Processing

Editors:Kongoli F, Akiyama T, Nogami H, Saito K, Fujibayashi A
Publisher:Flogen Star OUTREACH
Publication Year:2016
Pages:480 pages
ISBN:978-1-987820-46-1
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2016_Volume1
CD shopping page

    Recent Development of Combustion Synthesis

    JUN-ICHIRO YAGI1; Tomohiro Akiyama2; Xuemei Yi3;
    1TOHOKU UNIVERSITY, Sendai, Japan; 2HOKKAIDO UNIVERSITY, Sapporo, Japan; 3, Yangling, China;
    Type of Paper: Plenary
    Id Paper: 117
    Topic: 3

    Abstract:

    This paper describes recent developments in combustion synthesis (CS) for producing hydrides, nitrides, oxide and alloys during the last two decades which basically uses exothermic heat efficiently among powders and gas. It is mainly characterized by self-propagation of a high temperature synthesis (SHS) wave, minimization of productive energy, short processing time, non-equilibrium phase, high purity product, simple equipment and high productivity. In particular, combustion synthesis of hydrides1-3) (Mg2NiH4, LaNi5H6, FeTiH2, MgH2), nitrides4) (Si3N4, AlN, SiAlON), oxides (TiOx, FexO, MnxO, ABO3) and alloy (Fe2VAl) under the control of atmosphere has been recently reported. Synthesis of a non-stoichiometric compound such as TiOx by control of powder mixing ratio is also attractive from the viewpoint of defect design. The survey on major database revealed that the products reported covers many state-of-the-art energy conversion materials such as photo-catalyst, catalyst for the diesel engine, semiconductor, dielectrics, battery-related material, hydrogen storage alloy, thermoelectric device, refractory, hard material, and sinter for ironmaking. In conclusion, combustion synthesis will be reviewed from three viewpoints of exergy engineering, process engineering, and material science, together with companies established in Japan. <br />Keywords; combustion, process, energy, hydrogen, nitrogen, oxidation, industry<br />Reference)<br />1) Hydriding Combustion Synthesis for the Production of Hydrogen Storage Alloy, T. Akiyama, H. Isogai and J. Yagi, Journal of Alloys and Compounds, 252(1997), pp.1-4. [I.F. 1.035]<br />2) Hydriding Combustion Synthesis of TiFe, I. Saita, M. Sato, H.Uesugi, T. Akiyama, Journal of Alloys and Compounds, 446-447(2007), pp.195-199. [I.F. 1.455]<br />3) Self-ignition combustion synthesis of LaNi5 utilizing hydrogenation heat of metallic calcium,<br />N. Yasuda, S. Sasaki, N. Okinaka, T. Akiyama, International Journal of Hydrogen Energy, 35(2010), pp.11035&#65533;11041. [I.F. 3.945]<br />4) A New Route to Synthesize beta-Si6-zAlzOzN8-z Powders, K. Aoyagi, T. Hiraki, R, Sivakumar, T, Waranabe, T. Akiyama, Journal of Alloys and Compounds, 441(2007), pp.236-244. [I.F. 1.455]

    References:

    [1] T. Akiyama, H. Isogai and J. Yagi: Combustion Synthesis of Magnesium Nickel, Int. J. SHS, 4/1(1995), 69-77.
    [2] H. Isogai, T. Akiyama, and J. Yagi: Combustion synthesis of Mg2Ni and Mg2NiH4, J. JIM, 60/3(1996), 338-344.
    [3] H. Isogai, T. Akiyama and J. Yagi: Kinetics of Mg2Ni combustion synthesis, J.JIM, 60/7(1996), 640-646.
    [4] 4.H. Isogai, T. Akiyama and J. Yagi: Mathematical modeling of Mg2Ni combustion synthesis, J.JIM, 60/7(1996), 647-652.
    [5] 5. H. Kohno, T. Akiyama, S. Kobayashi, and J. Yagi: Morphology of combustion-synthesized Mg2Ni, J.JIM, 61/2(1997), .166-170.
    [6] T. Akiyama, H. Isogai and J. Yagi: Hydriding Combustion Synthesis for the Production of Hydrogen Storage Alloy, Journal of Alloys and Compounds, 252(1997), 1-4. [I.F. 1.035
    [7] T. Akiyama, H. Kohno, H. Nogami, R. Takahashi and J. Yagi: Thermal Conductivity during Combustion Synthesis of Production of Hydrogen Storage Alloy, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, 4/4(1997), 2567-2573.
    [8] T. Akiyama, H. Isogai and J. Yagi: Reaction Rate of Combustion Synthesis of Intermetallic Compound, Powder Technology, 95/2(1998), 175-181.9.T. Akiyama, H. Isogai and J. Yagi: Reaction Kinetics of SHS of an Intermetallic Compound – Magnesium Nickel, I.J.SHS, 7/2(1998), 161-172.
    [9] T. Akiyama, H .Isogai and J. Yagi: Mathematical Model of Combustion Synthesis, AIChE Journal, 44/3(1998), 695-700.
    [10] L. Li, T. Akiyama, T. Kabutomori, K. Terao and J. Yagi: In Situ X-ray Diffraction Study of the Hydriding Combustion Synthesis of Mg2NiH4, Journal of Alloys and Compounds, 281(1998), 175-180. [I.F. 0.880]
    [11] L. Li, T. Akiyama, T. Kabutomori, K. Terao and J. Yagi: Hydriding and Dehydriding Behaviors of the Product in Hydriding Combustion Synthesis of Mg2NiH4, Journal of Alloys and Compounds, 287(1999), 98-103. [I.F. 0.880]
    [12] L. Li, T. Akiyama and J. Yagi: Effect of Hydrogen Pressure on the Combustion Synthesis of Mg2NiH4, Intermetallics, 7/2(1999), 201-205.
    [13] T. Akiyama, H. Kohno and J. Yagi: Morphorogy of a Combustion-Synthesized Intermetallic Compound, I.J.SHS, 8/2(1999), 177-186.
    [14] L. Li, T. Akiyama and J. Yagi: Reaction Mechanism of Hydriding Combustion Synthesis of Mg2NiH4, Intermetallics, 7/6(1999), 671-677.
    [15] L. Li, T. Akiyama and J. Yagi: Effects of Hydrogen Pressure and Cooling Rate on the Hydriding Combustion Synthesis of Mg2NiH4 Studied by Thermogravimetry and X-ray Diffraction, Materials Transactions, JIM, 40/10(1999), 1079-1083.
    [16] S. Nagashima, T. Akiyama and J. Yagi: Preparation of Mg-Ni hydrogen storage alloys by hydriding combustion synthesis, J.JIM, 63/12(1999), 1555-1560.
    [17] L. Li, T. Akiyama and J. Yagi: Production of Hydrogen Storage Alloy of Mg2NiH4 by Hydriding Combustion Synthesis in Laboratory Scale, Journal of Materials Synthesis and Processing, 8/1(2000), 7-14.
    [18] L. Li, T. Akiyama and J. Yagi: Hydrogen Storage Alloy of Mg2NiH4 Hydride Produced by Hydriding Combustion Synthesis from Powder of Mixture Metal, Journal of Alloys and Compounds, 308(2000), 98-103. [I.F. 0.845]
    [19] T. Akiyama, Y. Hirai, and N. Ishikawa: Combustion Synthesis of Aluminum Nitride from Dross, Materials Transaction, 42/3(2001), 460-463.
    [20] T. Akiyama, T. Negishi, K. Saito, L. Li, and J. Yagi: Operating Conditions for Hydriding Combustion Synthesis of Pure Mg2NiH4, Materials Transactions, 42/8(2001), 1748-1752.
    [21] L. Li, T. Akiyama and J. Yagi: Activation Behaviors of Mg2NiH4 at Different Hydrogen Pressures in Hydriding Combustion Synthesis, International Journal of Hydrogen Energy, 26/10(2001), 1035-1040.
    [22] I. Saita, L. Li, K. Saito, and T. Akiyama: Pressure-Composition-Temperature Properties of Hydriding Combustion-Synthesized Mg2NiH4, Material Transaction, 43/5(2002), 1100-1104.
    [23] L. Li, I. Saita, K. Saito and T. Akiyama: Hydriding Combustion Synthesis of Hydrogen Storage Alloys of Mg-Ni-Cu System, Intermetallics, 10(2002), 927-932.(B)
    [24] L. Li, I. Saita, K. Saito, and T. Akiyama: Effect of Synthesis Temperature on the Purity of
    [25] Product in Hydriding Combustion Synthesis of Mg2NiH4, Journal of Alloys and Compounds 345(2002), 189-195.
    [26] I. Saita, L. Li, K. Saito and T. Akiyama: Hydriding Combustion Synthesis of Mg2NiH4, Journal of Alloys and Compounds, 356(2003), 490-493.
    [27] L. Li, I. Saita, K. Saito and T. Akiyama: Effect of synthesis temperature on the hydriding behaviors of Mg-Ni-Cu ternary hydrogen storage alloys synthesized by hydriding combustion synthesis, Journal of Alloys and Compounds, 372(2004), 218-223.
    [28] L. Li, I. Saita, and T. Akiyama: Intermediate products during the hydriding combustion synthesis of Mg2NiH4, Journal of Alloys and Compounds, 384(2004), 157-164.
    [29] I. Saita, K. Saito, and T. Akiyama: Hydriding combustion synthesis of Mg2Ni1-xFex hydride, Journal of Alloys and Compounds, 390 (2005), 265-269.
    [30] L. Li, I. Saita, and T. Akiyama: Intermediate products of hydriding combustion synthesis of Mg2NiH4 studied by optical microscopy and field-emission scanning electron microscopy, Intermetallics, 13 (2005), 662-668.
    [31] H. Ishikawa, M. Enoki, T. Ishihara and T. Akiyama: Combustion Synthesis of Doped Lanthanum Gallate as an Electrolyte for Solid Oxide Fuel Cells, Materials Transactions, Vol. 47. No.1 (2006), 149-155.
    [32] I. Saita, and T. Akiyama: Exergy Analysis of Hydriding Combustion Synthesis, J. Chem. Eng. Jpn., Vol.39, No.5 (2006), 525-530.
    [33] H. Ishikawa, M. Enoki, T. Ishihara, and T. Akiyama: SHS of Doped LaGaO3 Perovskite Oxide, I. J. SHS, 3(2006), 259-267.
    [34] T. Hirano, H. Purwanto, T. Watanabe and T. Akiyama: Self-propagating high-temperature synthesis of Sr-doped LaMnO3 perovskite as oxidation catalyst, Journal of Alloys and Compounds, 441(2007), 263-266.
    [35] I. Saita, M. Sato, H.Uesugi and T. Akiyama: Hydriding Combustion Synthesis of TiFe, Journal of Alloys and Compounds, 446-447(2007), 195-199.
    [36] L. Zhang, T. Tosho, N. Okinaka and T. Akiyama: Thermoelectric Properties of Combustion- Synthesized Lanthanum-Doped Strontium Titanate, Materials Transactions, 48(2007), 1079- 1083.
    [37] L. Zhang, T. Tosho, N. Okinaka and T. Akiyama: Thermoelectric Properties of Combustion- Synthesized and Spark Plasma Sintered Sr1-xRxTiO3(R = Y, La, Sm, Gd, Dy, 0.0< x <0.1), Materials Transaction, 48(2007), 2088-2093.
    [38] Y. Kitamura, N. Okinaka, T. Shibayama, O. O. P. Mahaney, D. Kusano, B. Ohtani, T. Akiyama: Combustion Synthesis of TiO2 Nanoparticles as Photocatalyst, Powder Technology, 176(2007), 93-98.
    [39] K. Aoyagi, T. Hiraki, R, Sivakumar, T, Watanabe and T. Akiyama: A New Route to Synthesize &#946;-Si6-zAlzOzN8-z Powders, Journal of Alloys and Compounds, 441(2007), 236-244.
    [40] K. Aoyagi, T. Hiraki, R. Sivakumar, T. Watanabe and T. Akiyama: Mechanically Activated
    [41] Combustion Synthesis &#946;-Si6-zAlzOzN8-z (z=1-4), Journal of the American Ceramic Society, 90(2007), 626-628.
    [42] R. Sivakumar, K. Aoyagi and T. Akiyama: Effect of Mechanically Activated Raw Materials on &#946;-Sialon Formation by Combustion Synthesis, Journal of Materials Research, 22(2007), 2863- 2867.
    [43] H. Ishikawa, M. Enoki, T. Ishihara and T. Akiyama: Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O3&#8722;&#948; for electrolyte of solid oxide fuel cells, Journal of Alloys and Compounds, 430(2007), 246-251.
    [44] Y. Kitamura, N. Okinaka, O.O.P. Mahaney, D. Kusano, B. Ohtani and T. Akiyama: Flash Synthesis of Titanium Dioxide Nanoparticles by Strong Exothermic Reaction Between Solids without External Energy, Journal of Alloys and Compounds, 455(2008), L1-L5.
    [45] H. Ishikawa, K. Oohira, T. Nakajima and T. Akiyama: Combustion Synthesis of SrTiO3 Using Different Raw Materials, Journal of Alloys and Compounds, 454(2008), 384-388.
    [46] L. Zhang, T. Tosho, N. Okinaka and T. Akiyama: Design of Cascaded Oxide Thermoelectric Generator, Materials Transactions, 49(2008), 1675-1680.
    [47] L. Zhang, T. Tosho, N. Okinaka and T. Akiyama: Thermoelectric Properties of Solution Combustion Synthesized Al-Doped ZnO, Materials Transactions, 49(2008), 2868-2874.
    [48] R. Sivakumar, K. Aoyagi and T. Akiyama: Thermal Conductivity of Combustion Synthesized &#946;- Sialons, Ceramics International, 35(2009), 1391-1395.
    [49] R. Sivakumar, K. Aoyagi, T. Watanabe and T. Akiyama: Thermal Conductivities of &#946;-SiAlONs by Mechanically Activated Combustion Synthesis, Key Engineering Materials, 403(2009), 139- 140.
    [50] T. Hirano, T. Tosho, T. Watanabe and T. Akiyama: Self-Propagating High-Temperature Synthesis with Post-Heat Treatment of La1&#8722;xSrxFeO3 (x=0–1) Perovskite as Catalyst for Soot Combustion, Journal of Alloys and Compounds, 470(2009), 245-249.
    [51] L. Zhang and T. Akiyama: How to Recuperate Industrial Waste Heat Beyond Time and Space, I.J.Exergy, 6(2009), 214-227.
    [52] K. Aoyagi, R. Sivakumar, X. Yi, T. Watanabe and T. Akiyama: Effect of Diluents on High Purity &#946;-SiAlONs by Mechanically Activated Combustion Synthesis, Journal of the Ceramic Society of Japan, 117(2009), 777-779.
    [53] R. Wakabayashi, S. Sasaki, I. Saita, M. Sato, H. Uesugi and T. Akiyama: Self-Ignition Combustion Synthesis of TiFe in Hydrogen Atmosphere, Journal of Alloys and Compounds, 480(2009), 592-595.
    [54] K. Taniguchi, T. Hirano, T. Tosho and T. Akiyama: Mechanical Activation of Self-Propagating High-Temperature-Synthesized LaFeO3 to be Used as Catalyst for Diesel Soot Oxidation, Catalysis Letters, 130(2009), 362-366.
    [55] C. Zhu, H. Hayashi, I. Saita and T. Akiyama: Direct Synthesis of MgH2 Nanofibers at Different Hydrogen Pressures, International Journal of Hydrogen Energy, 34(2009), 7283-7290.
    [56] F. Hsieh, N. Okinaka and T. Akiyama: Combustion Synthesis of Doped LaGaO3 Perovskite Oxide with Fe, Journal of Alloys and Compounds, 484(2009), 747-752.
    [57] R. Wakabayashi, S. Sasaki and T. Akiyama: Self-Ignition Combustion Synthesis of Oxygen- Doped TiFe, International Journal of Hydrogen Energy, 34(2009), 5710-5715.
    [58] R. Wakabayashi, N. Yasuda, S. Sasaki, N. Okinaka and T. Akiyama: Self-Ignition Combustion Synthesis of TiFe1&#8722;xNix in Hydrogen Atmosphere, Journal of Alloys and Compounds, 484(2009), 682-688.
    [59] A. Kikuchi, N. Okinaka, T. Tosho and T. Akiyama: Effects of Sintering Temperature on Thermoelectric Device of La-Doped Strontium Titanate in the Combination of Combustion Synthesis and Spark Plasma Sintering, Materials Transactions, 50(2009), 2675-2679.
    [60] N. Yasuda, R. Wakabayashi, S. Sasaki, N. Okinaka and T. Akiyama: Self-Ignition Combustion Synthesis of TiFe1-xMnx Hydrogen Storage Alloy, International Journal of Hydrogen Energy, 34(2009), 9122-9127.
    [61] H. Ishikawa, M. Enoki, T. Ishihara and T. Akiyama: Mechanically Activated Self-propagating High-temperature Synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-&#948; as an Electrolyte for SOFC, Journal of Alloys and Compounds, 488(2009), 238-242.
    [62] X. Yi, K. Watanabe and T. Akiyama: Fabrication of Dense &#946;-SiAlON by a Combination of Combustion Synthesis (CS) and Spark Plasma Sintering (SPS), Intermetallics, 18(2010), 536- 541.
    [63] X. Yi and T. Akiyama: Mechanical-Activated, Combustion Synthesis of &#946;-SiAlON, Journal of Alloys and Compounds, 495(2010), 144-148.
    [64] X. Yi, A. Yamauchi, K. Kurokawa and T. Akiyama: Oxidation of &#946;-SiAlONs prepared by a combination of combustion synthesis and spark plasma sintering, Corrosion Science, 52(2010), 1738-1745.
    [65] X. Yi, K. Watanabe and T. Akiyama: Vickers hardness of &#946;-SiAlON prepared by a combination of combustion synthesis and spark plasma sintering, Journal of the Ceramic Society of Japan, 118(2010), 250-252. (Technical note)
    [66] A. Kikuchi, N. Okinaka, and T. Akiyama: A large thermoelectric figure of merit of La-doped
    [67] SrTiO3 prepared by combustion synthesis with post-spark plasma sintering, Scripta Materialia, 63 (2010), 407–410.
    [68] N. Okinaka, L. Zhang and T. Akiyama: Thermoelectric Properties of Rare Earth-doped SrTiO3 Using Combination of Combustion Synthesis (CS) and Spark Plasma Sintering (SPS), ISIJ International, 50 (2010) 9, 1300–1304.
    [69] N. Yasuda, S. Sasaki, N. Okinaka and T. Akiyama: Self-ignition combustion synthesis of LaNi5 utilizing hydrogenation heat of metallic calcium, International Journal of Hydrogen Energy, 35(2010), 11035–11041.
    [70] C. Zhu, S. Hosokai, I. Matsumoto and T. Akiyama: Shape-Controlled Growth of MgH2/Mg Nano/Microstructures Via Hydriding Chemical Vapor Deposition, Crystal Growth & Design, 10(2010), 5123–5128.
    [71] A. Kikuchi, L. Zhang, N. Okinaka, T. Tosho and T. Akiyama: Optimization of Sintering Temperature for Maximizing Dimensionless Figure of Merit of La-Doped Strontium Titanate Thermoelectric Material in the Combination of Combustion Synthesis with Post Spark Plasma Sintering, Materials Transactions, 51 (2010) 10, 1919- 1922.
    [72] K. Taniguchi, N. Okinaka and T. Akiyama: Preparation and characterization of La1&#8722;xKxFeO3 (x= 0–1) by Self-propagating High-temperature Synthesis for Use as Soot Combustion Catalyst, Journal of Alloys and Compounds, 509 (2011), 4084-4088.
    [73] S. Hiroi, S. Hosokai and T. Akiyama: Ultrasonic Irradiation on Hydrolysis of Magnesium Hydride to Enhance Hydrogen Generation, International Journal of Hydrogen Energy, 36 (2011), 1442-1447.
    [74] C. Zhu, N. Sakaguchi, S. Hosokai, S. Watanabe and T. Akiyama: In situ Transmission Electron Microscopy Observation of the Decomposition of MgH2 Nanofiber, International Journal of Hydrogen Energy, 36(2011), 3600-3605.
    [75] N. Yasuda, T. Tsuchiya, S. Sasaki, N. Okinaka and T. Akiyama: Self-ignition combustion synthesis of LaNi5 at different hydrogen pressures, International Journal of Hydrogen Energy, 36(2011), 8604-8609.
    [76] A. Nobuta, F. Hsieh, T. H. Shin, S. Hosokai, S. Yamamoto, N. Okinaka, T. Ishihara and T. Akiyama: Self-propagating high-temperature synthesis of La(Sr)Ga(Mg, Fe)O3&#65293;&#948; with planetary ball-mill treatment for solid oxide fuel cell electrolytes, Journal of Alloys and Compounds, 509 (2011), 8387-8391.
    [77] L. Zhang, N. Okinaka, T. Tosho and T. Akiyama: Preparation and thermoelectric properties of highly oriented NaxCo2O4 by solution combustion synthesis method, Applied Mechanics and Materials, 71-78 (2011) 1213-1216.
    [78] C. Zhu, S. Hosokai and T. Akiyama: Growth Mechanism for the Controlled Synthesis of MgH2/Mg Crystals via a Vapor–Solid Process, Crystal Growth & Design, 2011, 11 (9), 4166- 4174.
    [79] A. Yamauchi, X. Yi, T. Akiyama and K. Kurokawa: Oxidation Behavior of &#946;-SiAlON in H2O- containing Atmosphere, Materials Science Forum, Vol.696, (2011), 395-399.
    [80] M. Hiramoto, N. Okinaka and T. Akiyama: Self-propagating High-temperature Synthesis of Nonstoichiometric Wüstite, Journal of Alloys and Compounds, Vol.520 (2012), 59-64.
    [81] X. Yi, A. Yamauchi, K. Kurokawa and T. Akiyama: Corrosion of combustion-synthesized &#946;- SiAlONs in supercritical water, Corrosion Science 56 (2012), 153–157.
    [82] N. Yasuda, T. Tsuchiya, N. Okinaka and T. Akiyama: Exergy analysis of self-ignition combustion synthesis for producing rare-earth-based hydrogen storage alloy, International Journal of Hydrogen Energy, 37 (2012), 9706-9715.
    [83] M. Hiramoto, N. Okinaka and T. Akiyama: Control of nonstoichiometric defects in manganese oxides by self-propagating high-temperature synthesis, Materials Chemistry and Physics, 134 (2012), 98-102.
    [84] C. Zhu, S. Hosokai and T. Akiyama: Direct synthesis of MgH2 nanofibers from waste Mg, International Journal of Hydrogen Energy, 37 (2012), 8379-8387.
    [85] L. Zhang, N. Okinaka, T. Tosho and T. Akiyama: Preparation and thermoelectric properties of highly oriented calcium cobalt oxides by solution combustion synthesis with post-spark plasma sintering, Journal of Optoelectronics and Advanced Materials, Vol. 14, No. 1-2 (2012), 67-71.
    [86] A. Kikuchi, D. Tran, S. Lin, N. Okinaka and T. Akiyama: Novel Combustion Route for SrTiO3 Powders, Applied Physics Express, 5(2012) 4, 041201
    [87] C. Zhu and T. Akiyama: Zebra-striped fibers in relation to the H2 sorption properties for MgH2 nanofibers produced by a vapor-solid process, Crystal Growth & Design, 12 (2012), 4043-4052.
    [88] J. Niu, X. Yi, I. Nakatsugawa and T. Akiyama: Salt-assisted combustion synthesis of &#946;-SiAlON fine powders, Intermetallics, 35 (2013), 53-59.
    [89] J. Niu, X. Yi, I. Nakatsugawa and T. Akiyama: Combustion synthesis of high purity &#946;-SiAlON fine powders using natural kaolin, AIChE Journal, 59(2013), 19-22.
    [90] X. Yi, J. Niu, T. Nakamura and T. Akiyama: Reaction mechanism for combustion synthesis of &#946;-SiAlON by using Si, Al, and SiO2 as raw materials, Journal of Alloys and Compounds, 561, (2013), 1-4.
    [91] T. Tsuchiya, N. Yasuda, S. Sasaki, N. Okinaka and T. Akiyama: Combustion Synthesis of TiFe- based Hydrogen Storage Alloy from Titanium Oxide and Iron, International Journal of Hydrogen Energy, 38, (2013), 6681-6686.
    [92] J. Niu, G. Saito and T. Akiyama: A New Route to Synthesize &#946;-SiAlON:Eu2+ Phosphors for White Light-Emitting Diodes, Applied Physics Express, Vol. 6 (2013), No. 4, 042105.
    [93] C. Zhu, A. Nobuta, I. Nakatsugawa and T. Akiyama: Solution combustion synthesis of LaMO3 (M = Fe, Co, Mn) perovskite nanoparticles and the measurement of their electro catalytic properties for air cathode, International Journal of Hydrogen Energy, 38 (2013), 13238-13248.
    [94] C. Zhu, A. Nobuta, Y-W. Ju, T. Ishihara and T. Akiyama: Solution Combustion Synthesis of Ce0.6Mn0.3Fe0.1O2 for Anode of SOFC Using LaGaO3-Based Oxide Electrolyte, International Journal of Hydrogen Energy, 38 (2013), 13419-13426.
    [95] J. Niu, K. Harada, S. Suzuki, I. Nakatsugawa, N. Okinaka and T. Akiyama: Fabrication of mixed &#945;/&#946;-SiAlON powders via salt-assisted combustion synthesis, Journal of Alloys and Compounds, 604 (2014), 260-265.
    [96] X. Yi, W. Zhang and T. Akiyama: Thermal conductivity of &#946;-SiAlONs prepared by a combination of combustion synthesis and spark plasma sintering, Thermochimica Acta, 576 (2014), 56-59.
    [97] K. Abe, A. Kikuchi, N. Okinaka and T. Akiyama: Single Thermite-type Combustion Synthesis of Fe2VAl for Thermoelectric Applications, Applied Physics Express, 611(2014), 319-323.
    [98] A. Kikuchi, N. Okinaka and T. Akiyama: Thermodynamic analysis of thermite synthesis for thermoelectric Fe2VAl, Journal of Applied Thermal Engineering, 4.1(2014), 876–883.
    [99] J. Niu, T. Nakamura, I. Nakatsugawa and T. Akiyama: Reaction characteristics of combustion synthesis of &#946;-SiAlON using different additives, Chemical Engineering Journal, 241(2014), 235-242.
    [100] C. Zhu and T. Akiyama: Optimized conditions for glycine-nitrate-based solution combustion synthesis of LiNi0.5Mn1.5O4 as a high-voltage cathode material for lithium-ion batteries, Electrochimica Acta. 127 (2014), 290-298.
    [101] J. Niu, K. Harada, I. Nakatsugawa and T. Akiyama: Morphology control of &#946;-SiAlON via salt- assisted combustion synthesis, Ceramics International, 40 (2014), 1815-1820.
    [102] C. Zhu, A. Nobuta, G. Saito, I. Nakatsugawa and T. Akiyama: Solution combustion synthesis of LiMn2O4 fine powders for lithium ion batteries, Advanced Powder Technology, 25 (2014), 342-347.
    [103] C. Han, C. Zhu, G. Saito and T. Akiyama: Glycine/sucrose-based solution combustion synthesis of high-purity LiMn2O4 with improved yield as cathode materials for lithium-ion batteries, Advanced Powder Technology, 26 (2015), 665–671.
    [104] J. Niu, S. Suzuki, X. Yi and T. Akiyama: Fabrication of AlN particles and whiskers via salt- assisted combustion synthesis, Ceramics International, 41 (2015), 4438-4443.
    [105] C. Zhu, G. Saito and T. Akiyama: A facile solution combustion synthesis of nanosized amorphous iron oxide incorporated in a carbon matrix for use as a high-performance lithium ion battery anode material, Journal of Alloys and Compounds, 633 (2015), 424-429.
    [106] M. Deguchi, N. Yasuda, C. Zhu, N. Okinaka and T. Akiyama: Combustion synthesis of TiFe by utilizing magnesiothermic reduction, Journal of Alloys and Compounds, 622 (2015), 102-107.
    [107] T. Nomura, C. Zhu, N. Sheng, R. Murai and T. Akiyama: Solution combustion synthesis of Brownmillerite-type Ca2AlMnO5 as an oxygen storage material, Journal of Alloys and Compounds, 646 (2015), 900-905.
    [108] C. Han, C. Zhu, G. Saito and T. Akiyama: Improved electrochemical properties of LiMn2O4 with the Bi and La co-doping for lithium-ion batteries, RSC Advances, 5 (2015), 73315–73322.
    [109] G. Saito, Y. Nakasugi, N. Sakaguchi, C. Zhu and T. Akiyama: Glycine–nitrate-based solution- combustion synthesis of SrTiO3, Journal of Alloys and Compounds, 652 (2015), 496–502.
    [110] http://www.biocokelab.com/
    [111] http://c-syn.com/

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    YAGI J and Akiyama T and Yi X. Recent Development of Combustion Synthesis. In: Kongoli F, Akiyama T, Nogami H, Saito K, Fujibayashi A, editors. Sustainable Industrial Processing Summit SIPS 2016 Volume 6: Yagi Intl. Symp. / Metals & Alloys Processing. Volume 6. Montreal(Canada): FLOGEN Star Outreach. 2016. p. 137-148.