Editors: | Kongoli F, Gaines G, Georgiev S, Bhalekar A |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2016 |
Pages: | 320 pages |
ISBN: | 978-1-987820-42-3 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Revolutionary new clean energy technology based on an irreversible energy releasing fusion process [1]. For this purpose, we used a steel reactor chamber pressurized with deuterium gas and sparked with carbon electrodes. Thermal measurements on the chamber were analyzed and compared with the total measured energy input to determine excess heat production. Mass spectroscopic analysis were performed on gas samples extracted before and after ignition to verify the formation of magnecular clusters (essentially consisting of clustered molecules) formed as by-products of the intermediate nuclear fusion process. The exterior of the chamber was monitored throughout these experiments with radiation detectors to assess if any harmful radiation were emitted into the environment. These experiments are the precursor to the construction and testing of larger scaled hadronic reactors at the Institute for Basic Research in Tarpon Springs, Florida.
The fusion of deuterium and carbon by the ICNF process to form nitrogen can be described using Hadronic Mechanics [2] with the following balanced equation:
TR + H (2, 1, 1+, 2.0141) + C (12, 6, 0+, 12.0000) → N (14, 7, 1+, 14.0030) + ΔEheat
The results taken from the experimental runs conducted on the hadronic reactor indicates some form of exothermal reaction taking place that produced clusters of higher mass components. Since chemical reactions and combustion cannot have occurred in a pure deuterium environment, the conclusion leads to an indication of the process described as Intermediate Controlled Nuclear Fusion without harmful radiations.
REFERENCES
1. R. Brenna, T. Kuliczkowski, L. Ying, Verification of intermediate nuclear fusions without harmful radiation and the production of magnecular clusters, New Advances in Physics, Volume 5, Number 1, pp 9-17 (2010)
2. R. M. Santilli, Hadronic Mathematics, Mechanics and Chemistry, Florida: International Academic Press (2008)