Editors: | Kongoli F, Noldin JH, Takano C, Lins F, Gomez Marroquin MC, Contrucci M |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2016 |
Pages: | 320 pages |
ISBN: | 978-1-987820-37-9 |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Many experiments related to investigate the properties of higher alumina slag had been carried out through adjustments of slag composition and test temperature. The influence of MgO and basicity (CaO/SiO2) on melting temperature and high temperature(1400-1500 ¡æ) viscosity was especially paid attention. The experimental results show that when Al2O3 range in 15-16.5%, MgO range in 7-7.5% and basicity range in 1.2-1.3, the BF slag display typical properties of short slag, and can perfectly satisfy the requirements of blast furnace operations. Meanwhile, the melting temperature of serpentine is higher and can not drip, which is always used as a flux adjusting the slag component Meisteel. A higher softening and melting temperature will result in a thicker cohesive zone and have the negative effect on the smooth process of BF. Thus, the industrial trial of using higher alumina slag (>16%) had been implemented at No.5 BF (inner volume 4000m3) in Meishan steel based on the experimental results. As a result, the addition of serpentine flux was stopped, the blast furnace maintained smooth and steady performances, the productivity maintained 2.2t/m3.d, and the fuel rate was decreased 3kg/t, with the BF burden quality degradation.
Keywords: Blast furnace, Slag, High aluminum, Ironmaking